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Abstract

T

—We-considerga distributed communication system with many terminals wishing to communicate
with each other. When the terminals are distributed in space we must face the following questions:
What scheme can control the access to the communication resources in an effective way? What
tradeoffs are basic to the design of such a communication system” What is the role of hierarchies in
organizing large communication nets? How should a large network be decomposed into smaller parts’?
What cost versus performance gains can be achieved by such a decomposition”?

In attacking these questions we consider two technologies - line and broadcast - and two kinds
of systems - centralized systems. in which messages originate in the distributed terminals but are directed
to one common destination, and nerworks, in which both sources and destinations of messages are
distributed.

We assume that the traffic 10 be carried and the necessary performance are specified and that
the goal is to minimize the necessary cost. We define qualiy and burstness and find the following:
Dedicating channels is reasonable when the traffic is steady (i.e., not bursty), but when the traffic is
bursty the cost of simple dedicated-channe! systems grows too fast with the number of terminals.
ALOHA is good when the traffic is bursty, but bad when the traftic is stcady. Neither ALOHA nor
dedicated channels are good when the traffic is of medium burstiness.

When given a broadcast channel, choosing the transmission range invoives the following
tradeofl: A long range enables messages to reach their destinations in a few hops. but increases the
amount of traffic competing for the channel at every point.

I A A A

In the first paper we calculate optimal transmission range. When choosing this optimal range.
ALOHA networks gain a self adjusting capability, which makes heavily loaded ALOHA networks far
better than centralized ALOHA systems. It is therefore harder to improve ALOHA networks than
ALOHA centralized systems; power groups lead to a smaller relative improvement, while a hierarchy of
ALOHA levels. with only a small popufation contending at the top level, can improve centralized
systems but does not improve networks.

ln\the second paper we show that by introducing regular hierarchical structures the cost of
bursty systems can be significantly reduced, and that the optimal structure must be balanced. In line
systems the improvement follows from shortening individual lines, while in broadcast systems the
improvement follows from spatial reuse. -

The cost of the best bursty line system grows with the dimensionality of the space in which
terminals are distributed. The cost of the best bursty broadcast system is similar to the cost of one-
dimensional line systems and is independent of dimensionality. It follows that bursty broadcast systems
have an advantage over line systems in two or more dimensions

-




Organizing a two-dimensional network imposes a tessalation on the plane. When using the best
number of levels, as a function of burstiness, tessalating the plane with hexagonal tiles (and forming a
triangular network of communication lines) is usually optimal.

_/ In the third paper we show that mixed-mode systems. using ALOHA in a bottom level and
dedicated channels in a top level, can be very good for medium burstiness since they can trade the
amount of interference in the random access level against the number of dedicated channels in the top
level. By choosing the right mix. such networks can become insensitive to the limitations of both

access schemes.
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On a Self Adjusting Capability of ALOHA Networks

Abstract

We consider a distnibuted communication network with many werminals which are distributed in
space and wishing to communicate with cach other using @ common radio chennel. Choosing
the transmission range in such a network involves the follcwing tradeofl: a long range enables
messages (o reach their destinations in a few hops. but increases the amount of traffic compelting
for the channel at every point.

N With the help of a simple model we analyze this tradeoff for ALOHA networks, and give the
optimal range. When choosing this optimal range. as a function of specitied traffic and delay
parameters, ALOHA networks demonstrate an important self adjusting capability. This capabil-
ity to adjust to traffic makes heavily loaded ALOHA nerworks far better than centralized ALOHA
systems (in which all messages must reach one common destination).

Dividing a terminal population into power groups can improve any ALOHA system, especially
when the traffic is split between groups in an appropriate way, which we demonstrate. But since
ALOHA networks are hurt by destructive interference less than centralized ALOHA systems it
is harder to improve them. Using power groups can significantly improve centralized svstems,
but will lead to a smaller relative improvement in ALOHA networks.

Decomposing the system into a merarchy of ALOHA levels, with only 4 small population con-
tending at the top level. can improve centralized systems but does not improve networks

1. Introduction

Consider a large number of terminals, physically distributed over a large geographic region. If
all terminals wish to communicate with one destination we shall cail the system centralized and the com-
mon destination the station. Assuming the communication resource available is a radio channel of a
given bandwidth, how should this common channel be shared among the terminals?

If the terminals were co-located in the same place, the best way 1o use the channel is to form a
queue of busy terminals (i.e., those having anything to transmit) and to let them use the full bandwidth
available one after the other. Forming one queue is much better than giving each terminal a fraction of
the bandwidth, and letting each terminal queue its own messages [1].

It is no trivial matter to have all terminals form one queue when the terminals are numerous
and distributed over large distances. Of special interest, then, is the ALOHA approach., which invests
no resources in coordination and control of terminals. When using the (unslotted) ALOHA scheme
cach terminal transmits whenever it has a message ready. If more than one terminal is transmitting at
the same time a conflict will occur in the use of the radio channel, ~nd we shall assume at first that all
messages involved in such a collision will be destroyed. When the destruction of its message becomes
known to the terminal it will, after a somewhat randomized delay. retransmit the message. We shall
not specify how the failure of its message becomes known to the terminal, but assume that this
knowledge is free.

PREVIOUS PAGE
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Schemes based on the ALOHA idea have been extensively treated [2.3.4]  ALOHA is obvi-
ously good when the system is lightly utilized and destructive interference is not very likely. When the
load is heavy a significant fraction of the transmissions will tail as a resutt of collisions.

The wasteful eftect of collisions can be reduced if all transmissions are of the same length [3]
This is usually achieved by breaking long messages into packets of a fixed maximum size. in this
paper, we assume that this is always done and despite the fact that one message may result i several
packets we assume that arrival of separate packets into our system is independent, and that the total
arrival process is Poisson.

The wasteful effect of collisions can be further reduced if time is slotted (where cach slot has
duration which is equal to a packet transmission time) and if terminals are constrained to start transmit-
ting only at the beginning of a slot. The resulting access scheme is called Slotted ALOHA, and the
maximum fraction of the time slots it can use for successful transmissions is known to be 1/¢ [6].

Let us choose the data unit so that the average length of a message is equal to 1. This is simply
a convenient normalization, which is equivalent to measuring communication capacity in messages (of
an average length) per second, instead of measuring in bits per second. The throughput-delay perfor-
mance of the ALOHA schemes is not described by a simple analvtic expression {3]. For simplicity we
shall use the following ad-hoc expression to describe the performance of the ALOHA schemes

T =— ()

Here T is the average response time of the system and S is the system throughput (messages per slot).
We shall assume that this expression describes the optimum envelope of slotted ALOHA and unslotted
ALOHA performance curves. (For S—0 it describes unslotted ALOHA. for S/C—1/¢ it describes
slotted ALOHA )} Equation (1) is 4 simple two-parameter approximation. that reproduces the known
behavior when S=0 and when S/C=1/e. For a similar three-parameter approximation see {151,

Assume that the throughput S and the acceptable delay T are specitied, and that we seek an
access scheme that will minimize the necessary system capacity C. For most purposes it is sufficient to
specify the communication needs by the dimensionless product S7. whose inverse we shall call bursn-
ness [7,16,17]. We shall define the quality {71 of an arbitrary access scheme as the inverse ratio
between the capacity nccessary when using this scheme and the capacity necessary when using the best
possible scheme, in which messages form one queue and share one channel. When messages arrive

independently and their lengths are exponentially distributed the best scheme is the M/M/1 queue, in
which we have C =S5+ 1/T. The quality of the the ALOHA scheme is therefore simply %

see that the ALOHA scheme then has a quality of | when the traffic is very bursty (ST<<1), ie.. it
needs no more capacity than the M/M/1 scheme, and a quality 1/e when the tratfic is very steady

(ST>>1).

ALOHA systems with large populations have stability and contrel problems {3.8 9], but in the
spirit of maintaining the simplest possible approximation we shall not deal with them.

In the centralized system described above, all messages have one common destination. ¢ven
though their sources are distributed. When the traftic to be carried is between manv terminal pairs we
have a different problem. which we shall call the nerwork prablem. That is. in a network, both the
sources of messages and their destinations are distributed.




[n describing the centralized system we have implicitly assumed that all terminals can transmit
with enough range to reach the station (i.e.. we are not power limited), and that transmitting directly to
the station is the best policy.

If the transmission range is not enough to span the distance from source to destination. the
message will have to be received by some intermediate node and relayed towards its destination. That
15, & message may nced more than one hop in order to reach its destination. The intermediate node is
often called repeater.

We have assumed that the centralized system is a one-hop system, but we shall explicitly treat
the question of transmission range in networks. since it introduces an imporiant tradeoff: a short
transmission range makes more hops necessary. but reduces the intertering traffic. We shall see that
choosing an appropriate range, as a function of traffic characteristics, will lead to the self-adjusting capa-
bitity referred to in our title.

In section 2 we analyze networks assuming that the range of everv transmission can be perfectly
adjusted. In section 3 we analyze networks assuming the range of all transmissions must be equal. In
section 4 we introduce the idea of power groups and show how it improves ALOHA systems. In sec-
tion § we analyze hierarchical organizations of ALOHA systems with many levels.

2. Adjusting the Transmission Range

We assume that the transmission policy of all terminals is chosen to optimize the overall net-
work performance. In order to analyze the tradeoff between range and interference we need a detailed
modei. We shall assume that our network covers a region of space that is large enough to make edge
cffects negligible. We shall also assume that terminals are placed everywhere with the same density.
and that the terminal density is very high, so we may make all calculations as if we had a continuum of
terminals. Other assumptions we adopt are [7]:

(H The rate of traffic exchanged between any two small geographic areas depends only on the size
of the areas and the distance between them. The rate does not depend on the identity (ie.,
location) of the areas or the direction from onc to the other. That is, our network is homo-
geneous and isotropic in its statistical properties.

) The access scheme used is slotted ALOHA. That is. we ignore the fact that the synchroniza-
tion necessary for slotted ALOHA is hard to achieve in a neiwork with long range transmissions
and partiatly overlapping ranges.

(3) The terminal’s antenna is simple. and the signal propagates equally in all directions.

(4) A transmission will not be bothered by other transmissions that are not within range of its (pos-
sibly intermediate) destination, but will be destroyed 9y any simultaneous transmission that
takes place within range of its destination. A transmission will be successful whenever it is the
only one within range of its destination. That is, we assume a definite range, beyond which no
interference is felt. This is. of course, an abstraction of the real world. in which both success-
ful reception and destructive interference are probabilistic events.

Consider a given terminal with a rate of s messages per slot destined to another terminal. A
transmission will be successful only if there is no other transmission with enough range to interfere
with it. Our terminal will have, therefore, to offer a total traffic of ¢ messages per slot in order to
succeed at a rate s, were g includes retransmissions of previously unsuccessful messages. Let G be the
total offered traffic per slot heard at the destination. Assume that G is created by an infinite population




of terminals, and that the amount contributed to it by every source-destination pair is a Bernoulli pro-
cess independent of the trafltic offered by any other source-destination pair. Returning to our given ter-
minal. whose contribution to G is minute, we must have s = ge Y. where ¢ @ is simply the probabil-
itv that no other message is transmitted in the slots used by our terminal. Summing over all transmis-
sions heard at our destination we gt

S, = Ge© (2)

where S, denotes the total traffic successful at its destination and heard at our destination. This total
traffic consists of messages with many different destinations. and the success of cach message depends
on what happens at its destination. But all these messages contend with our transmission for the use of
the channe!l around our destination.

Equation (2) looks exactly like the equation describing a centralized slotted ALOHA system
{6]. G and S, do not. of course, depend on the transmission in question. and we can therefore say that
any transmission sees an ALOHA system at its destination with a throughput equal to S.. where the
subscript on S, stands for contending. If we unnormaiize S, and measure it in messages per unit time,
we may use (1) and write the average delay per hop suffered by any message as follows:

|

T =S, (3)
In the centralized case. interference always destroys both messages involved. In the network case
analyzed here this is not necessarily true. Since the ranges of the transmission involved and their desti-
nations may be very different. a collision of two messages at the first’s destination will destroy the first.
but may not bother the second at its destination. We shall use (3) for the delay in ALOHA networks.
even though what happens at each destination is not cquivalent to a closed. centralized ALOHA sys-
tem. this is supported by [16] wherc the optimal transmission policy for ALOHA networks, given the
hearing matrix. is shown to be identical to the optimal policy in centralized ALOHA systems. How-
ever, our goal here is to choose the optimum hearing matrix by choosing the transmission range.

The discussion so far applies to any network which is homogeneous and isotropic in a statistical
sense. To be more specific let us assume that the terminals are distributed in an mfimre two-
dimensional region. That is, in a region whose size is much larger than the typical distance travelled by
messages. so that edge effects can be neglected. Let S be the total traffic coming out of a unit area, and
fet f(r) be the traffic density. That is, the traffic going from one small (source) arca d4, to another
small (destination) area dA4, is given by f(r)dA,dA,;. where r is the disiance between the two small

areas. We obviously have § = f_/'(r)Zn-rdr and f£(r)2mr/S is therefore the probability density function
r={)

for the distance travelled by a message. N, the average distance travelled by messages. is given by

N= f rf(r)2mrdr. To calculate S., the total traflic contending at any destination, consider a message
r=0
that must travel a distance of between r and r+dr. It will be heard at « given destination if it starts any-
where within a circle with radius r around that destination. We can then write
S. = fnrz‘/'(r)errdr = 7SN? (4)
r=0)

Where N is the second moment of the distance travelled.

Assume now that the transmission range is chosen in such a way that every message will have
exactly enough range to reach its destination in one hop. Substituting (4) in (3) we see that an
ALOHA nerwork in which every message reaches its destination exactly in one hop has the same delay-
capacity relationship as a centralized ALOHA system carrying a total traffic # SN2,




The simplicity of (4) 15 a result of the assumption that power can be adjusted exactly to reach
the destination. Two objections can be raised to this assumption:

th Will a terminal always have cnough power o reach its destination in one transmission”?

12) Will the terminal have the capability to exactly adjust its power, and will it know the distance to
its destination. on which this adjustment should be based”

These two objections are especially important in the environment of many cheap mobile termi-
nals. which is exactly the environment which makes the ALOHA idea attractive.

We shall treat these objections later. but let us now ask another question: even if we can adjust
the range so as to exactly reach the destination in one hop. is this a good policy? In [11] the question
was posed thus: should we take giant steps. assuming we can”? 1t was shown there that if, for a given ¢
and traffic requirement, the delay per hop grows without bound as a function of the step size R. then
there is an optimal step size, and steps should not be giant. We wish to find the optimal range policy s
a function of traffic requirements. and for this we need the following:

Theorem I If a message must travel a distance X in & hops it should. in order to make the best use of
the communication resources. do so in & equal hops. each of length X/ k.

Proof: Whether we want to minimize 7 when S and C are given, or to minimize the necessary ¢ when
Sand T are given. we must, in order to get the best system, minimize the total contending traffic al
cach destination  But this i1s equivalent to minimizing the total area at which 4 given message is heard.
(et ¥ be the size of the ~th hop, where £ X, = X, The arca in which our message is heard is propor-
tional to the L ¥'* Minimizing the area at which our message is heard is therefore the following sim-
ple problem of constrained minimization:

Minimize L X}

subject to L X, = X
The solution of this minimization problem gives the equal step result stated in the theorem.

Let us now consider the following family of policies which use a perfectly adjustable but limited
transmission range Given the maximum range R. the path of cvery message will be divided into the
minimum number of equal hops. Which R will give the best overall system performance? Should we
try to make R as large as possible? To answer these questions we must determine how S, depends on
R. Writing S, as a function of R and the distribution of the distances travelled is a straightforward but
cumbersome operation. However, the following bounds are simple to obtain:

Since StR) is & monotonic increasing function of R, an obvious bound s
S IRIELS, (oo)=7SN? . When R is very large all messages will reach their destination in one hop. so
the equality here follows from (4),

Another bound. especially usefu! when R is small, can be obtained as follows: The total area
covered by the several transmissions of a message that has to travel a distance r can be bounded from

abave by 7%#/?2 and S, (R ) can therefore be bounded by

SR) < [ LaRi(2mrar < 7RNS (%)

-0

Fig. 1 shows the two bounds and & hypothetical S (R).
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S

A HYPOTHETICAL S,

Figure 1. Two Bounds on S., the Total Successful Traffic Contending at Each Point.

We shall assume that the traffic to be carried is specified, that an acceptable delay is specified
and that the goal of a good design 1s to make the necessary bandwidth as small as possible. The
specification can be summanized by the dimensionless quantity N1ST. When NIST << 1 we call the
network, and the traffic, urst, and when NIST>> 1 we call the network sready.

For small R we can use the bound of (5) as an approximation for S (R). and we will combine
it with N/R as an approximation for the average number of hops per message. to get the following
approximate expression for the delay

r - —NR__
C - enSNR
Inverting we get
. . 1 N
= ¢nSMR + = — {
( e 7 R 6)

and from this approximate expression for ¢ we can get that the optimal R (e, the R that minimizes




communicate with the station using ALOHA.  All communications will use the full capacity of the
channel. Repeaters may be necessary in order to extend the range of trunsmission. but we shall assume
this is not a problem. and shall only be interested in introducing repeaters in order to improve system
performance. That 15, 10 fessen the delay when S and C are given. or lessen the capacity necessan
when Sand 7T are given

Should all groups of termunals be of the same size”? To minimize contention in the bottom
jevel all ALOHA subgroups should carry the same trathic, i a ssmmetric bottom level is best. But in
order to reduce the contention in the top fevel we should have as mwuch asymmetry as possible The
best top level will consist of one repeater forwarding all the trattic to the station without any conflict
But such a two-level system will not help us, because its bottom level itsell s cquivalent to the one-
fevel system we set out to improve,

Since two-level systems dre introduced in order o reduce the contention in the bottom level we
shall assume that whenever two levels are better than one. the trathic is evenly divided between groups.
Gitman {14} introduced such 4 scheme and calculated the capacity of two-level systems. He assumed
all terminal groups can use the same channel without interference. that a terminal cannot be successful
when its repeater is talking to the station. e, the repeater cannot talk and listen at the same time. and
that a termindal may be influcnced by other repeaters talking. The largest capacity is obtained when the
terminal is influcnced only by ils own repeater. and when there are only two repeaters. But even then
the capacity obtained 15 less than 172 The reason for this is the following: Let § be the ot
throughput in the system Let ¢ be the otal offered traffic in the top fevell that consists of two
repeaters. G is larger than § because it includes the retransmissions of messages that have been previ-
ously transmitted unsuccessfuily  In a system with capacity C the slot size will be 1/C since we have
chosen an information unit such that the packet length is one. The throughput and the offered trathe
per slot will then be S Cand G/C We shall assume that the traffic per slot offered from cach of our
two repeaters is a Bernoulli process. i.¢.. a discrete Poisson process. which is independent (1) of the
traftic offered by the other repeater. A transmission from a repeater will be successful only if the other
1$ not transmitting in the same time slot. Caleulating the total success rate in the top level we get

;5_ - G | G

- (28)
C 2| 2

where G/2C is the total traflic offered by each one of the two repeaters. and 1-G/2C is the probabiliny
that a packet succeeds. In order to achieve $/C=1/2 we must have ¢/ C=1. so that each of our o
repeaters is talking half the time It is impossible to feed such a talkative repeater from an infinite
population of terminals, because the maximum success rate of cach of the two groups is
1-G/2C) e= 184< 25,

The maximum throughput of such a two-level system is given by the lollowing set of equations

y G
S = Gt 3
M G |1
_ = | - —{—
C 2 20 ¢

from which we get that the maximum S/7C is equal to 0,465, So even though we cannot achieve the
full capacity of a two terminal system we do get an improvement over a one-fevel ALOHA

20




improvement even though the considerate strong group carries more of the traffic. moves with smaller
steps and uses less of the channel relative 10 the weak group.

For a summary of the optimal range and the necessary capacity in various two-dimensional net-
works see Table

Table |

Best Fransmission Range and Needed Capactty for Two-Dimensional Networks

CUmaton L Rawe T Copady
MM - 7 7 Ry Gy
ALOHA tone group) ; O60TR 1.647(C,,

—_ IR - U S ——
ALOHA (two groups. same range) ; T29R, 1.372C,,

. T oot T Tm e e/ T T o "“'\ 'Aii_—’f'->""' I \77 " ~
ALOHA (wo groups. separate ranges!? L sefish L ;;iR_‘l,‘_ﬁ__l_'L”_(_.“

‘L considerate T 182R, 1.279¢C,
— - — e e e i e e i - S S DU U R,
R,~ ”7»—]'._T Co=28mNST
ST

5. Multi-Level ALOHA

Unti now we have abwavs assumed our ALOHA systems have an ofonte population. Let us
now consider a sfotted AFOHA System with o finite number. m of cqualty dkative erminals. Assum-
ing the tathe offered by any terminal at a given slot s independent of the eathe offered by other termi-
nals or at other tnme slots we can simply see (2] that such an m-termimal ATOHA system can success-
Tutly utbize o traction of the time slots equal o

(R (26}

Lhe vest of the tme slots will be wasted on destructive interference. or witl be left unused even with
some messages wating for transmission  This last occurrence is necessary inan optimized system 10
ensure the fraction of slots wasted on collisions is not too large.

When mois very large. Ego (26) states that the maximum utihzation of an infinite population
slotied ALOHA s V¢, which is the expressior we used beiore. But when mis Hnite the ALOHIA sys-
tem can do better. The best case is when m =2, and the maximum possible utilization is then 12 One
could alsa talk about an ALOHA system with only one terminal, that can use all trme slots without any
wastetul cotlistons, but this case s of no interest

In analogy to t1 we shall model the delay ot a tinite population slotted ATOH A system by

where L, s the maximum possible uttlization ol an m-terminal system, as given by (26)

Since ALOHA systems with a small population have better utilization and smaller delay than
ALOHLA systems with a large population, one is led to the following hicrarchical scheme: Divide the
very large terminal population into a small number of groups.  Assign a repeater to each terminal
group.  bach group will communicate with 1ts repeater using ALOHA, and the repeaters will

19




Can this result be improved if messages from the two groups will not travel the same average
distance” Let Ay and N, be the average distance travelled by messages from the strong and weak
group, respectively. Substituting N, for N in (23) and N, for N in (24) we have T, and T, Our goal
now is to minimizeN gsubject o N8+ N,8,= NS and subject 10 $,+5,=5 1t is easy to see that T is

191 1

NS ;?= 1.261. and that the minimal 7 is given, once again, by (25). That s,
V22

the added flexibility of giving cach group of messages a different average distance does not lead o a
better network!

minimized when

It is interesting to note that —,—l = -' but that —5»'1'- -1 1.261. That is, we can choose the
r. N, S.T: b’

ratio between T, and T at will (by adjusting N /N ,) but the contribution of the strong and weak group

to the average delay and to the average number of messages in the network will alwavs. in an optimized

system. be in a fixed ratio.

Let R, and R; be the maximum hop size in the strong and weak group. Using (7) we see that

when 7 is minimized 'S =4 =.793 That is - the strong group carrics much more of the tratfic. and

5

even though it has more bandwidth avatlable. it uses smalfer hops

When choosing §5,.5..%, and ¥, in order to opumize the two-dimensional network with two
groups, we have assumed that the strong group is selfish. But we saw before that a better overall svs-
tem can be obtained if the strong group is not absotutely selfish. and does not use the channel to s
utmost. How considerate should the strong group be in g network”?

The average defay in the strong group can be written (when N >> R ) as
r Ni/YR,
‘ C enR NS
Here we cannot use (8) because when the strong group is considerate it will use o smaller range R
than the range used by a selfish group

The weaker group Jdoes not bother anvone. and should use what is available to 1t 1o the ulmost
Let b denote, once again, the fraction of capacity available to the weak group. (b is now a design vari-
able, parametrizing the amount of consideration shown by the strong group). To the weak group we

N»‘S,
can apply (8), and we then get T, = dew —}’7(—, Our goal 1s to mimmize ST =58,7,+ 5,7, by choos-

ing S\.N.R,.5,Nyand R, subject 1o $,+5,=5. $;¥, +5.V,=8V When choosing $|.N | and R, we
also determine b To see this let us denote by G the tota! traffic (per ume slot) offered by the strong
group which is heard at anv given point G can be determined by cquating the following two expres-
sions for the success rate of strong messages at any local ALOHA system. Ge “=aR N §5/C b, the
fraction of nme slots left free by the strong group. is gisen by b=¢ T obviously depends on
S\.N .5, and V; only via the products S{N,; and $,V; The results of choosing the best SV, and
SN, fora given Ry, can be most simply wertten in terms of
(S VIR . S S S
C deGe "ll - eGe °] e 0

The G which minimizes T can be found by numencally solving the eqaation d7/dG=0. and 1s given by
G = 179 bis then equal to ¢ “= 836 and the quality of this best two-group two-dimensional net-
work is then .782. In this network. with a considerate strong group, we have V,S,/N,8; = 1.380 and
R/R, = 0704 Comparing with the sclfish case we see that consideration lcads to an overail




strong group is e— ! times the traffic contributed by the weak group.

Until now we have applied the idea to partially coordinated groups (i.e., power groups) to cen-
tralized ALOHA systems. How can it be applied to networks? In our analysis of ALOHA networks we
have used the transmission power to control range. We shall now assume that the division into groups
is done by means which are independent of power so that transmission range can stili be freely chosen.
We shall also assume that the policy of assigning transmission power is independent of position. and
that the density of both strong and weak sources is high and uniform.

One simple way to improve ALOHA networks by using groups is the following: The same
transmission range will be chosen for both srrong and weak transmissions, and the partial coordination
between them will simply improve the local ALOHA system. From (18) we get that the maximum
local utilization of a two-group ALOHA system is 0.531. Substituting this in (8) we see that by using
two groups with the saume range the quality of a two-dimensional network can be improved from
v.367=.607 to V.531=.729 . In one-dimensional networks the quality is equal to the local utilization
and using two groups will improve both from .367 to .531.

We see that since networks of high dimensionality are less sensitive to the limited utilization of
the ALOHA scheme it is harder to improve them by introducing a better scheme.

The capability to divide terminals into two partially coordinated groups can lead to a greater
improvement of ALOHA networks (in two or more dimensions) if transmission range is chosen
independently for the two groups.

Let us consider a two-dimensional network and assume at first that the average distance
travelled by transmissions from both strong and weak groups is equal to M. We shall also assume that
if a message needs more than one hop then all of its hops will be strong or all of them will be weak.
Let §) and S, be the traftic density of the strong and weak group. and let T, and T, be the average
delay suffered by messages from the strong and weak group respectively. In a heavily loaded system, if
the strong group is absolutely selfish it will utilize the full channel in the way best for it and we then
get from (8) that T, and S, satisfy

NS,

7= dem— 3+ (23)

The local utilization of the strong group, when optimized for heavy traffic, is 1/2e. It is easy to calcu-
late that the strong group leaves then a fraction b= 793 of the time slots unused. and these slots are
available for the weak group. That is, the capacity available (o to weak group is bC. Using (8) we get
that
NS,

T; = 4(’”;2—(—72’ (24)
I'. the message delay averaged over all messages, from both groups. is given by 7S =75+ T,5,. and
our goal is to mmimize 7 by choosing §; and S, subject to §;+5,=5. It is simple to see that T is
mimmized when S,/S,=1/h’=1.261 and is then given by

7= an—2 g (25)
1+ 5 (
The quality of this two-group network is therefore \/(.Iv:h’iﬂ/u- = 774
17
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This expression for T is a weighted sum of two delay terms. The first term corresponds to the
delay in the strong group. (which can ignore the weak group and that behaves like an ALOHA system
with capacity C and traffic §;.) The communication capacity availuble to the weak group is Ce G
since this is the portion of the channel left unutilized by the strong group. The second term
corresponds to the delay in an ALOHA system with this reduced capacity carrying a traffic S,.

With a given C and with a given total traffic S=S,+5,, which S, and S, will give the minimum
delay? The best S| and S, as a function of load can be found numerically: Fig. 4 gives the quality of
the two-group ALOHA system thus optimized. When the system is only lightly loaded, S,/S, is only
slightly larger than one. When the load grows this ratio also grows, and when the system is driven to
its maximum utilization §,/S, goes to e—1, as given by (19). Aiso shown in Fig. 4 is the quality of a
two-groups system in which the ratio between S, and S; was always chosen by (19). which is the
optimal choice at heavy traffic. We see that the improvement gained by optimizing the ratio between
S, and §; as a function of load is negligible, and that a very good two-group centralized ALOHA sys-
tem can be obtained by simply splitting the terminal population so that the traffic contributed by the

s




(18)

and that this utilization is achieved when

(%)

]
= e (19
5, ¢

The above treatment can be generalized to many groups. Assume that the terminals are
divided into r progressively weaker groups where the following is true: A message will never be both-
ered by transmissions from weaker groups, and will always be destroyed by transmission from its own
group or from a stronger group. We then have:

Theorem 5: Let V, be the maximum utilization of a slotted ALOHA system whose infinite popufation
is optimally divided into r groups. with the above assumption on immunity to some cases of interfer-
ence. Then ¥, satisfy the following recursion relation:

b= ¢ ’ (20
Proof:  1n analogy to the two group case we can write

S| = (i; €
53 = (13 ¢ e {
¥, is obtained when S=5,+5,+ .+ s muanuzed by varving the G S0¢ 1o 1ransmissions [iom

weaker groups will ever influence the strongest group we can optimize thew throughput separately . and
(21) will then reduce to

S, = Gie ™ R
Sy+ 4S8, = b, e
The optimal G is then casily found to satsfhy G, 1 b and substtuting this G into (220 we gel

(20).

The sequence },. whose tirst poruon s shown in b 315 « monotonic increasing sequence
converging (slowly!) to 1. This is not surprising since when we have o lurge number of groups most
collisions will be between messages from ditferent groups. und one of the messages will be successtul

Having a large number of groups with the clear separation assumed . Thoorem 5 may be
impractical. But having two groups s reasonable. and we shall discuss this case in some detail

Eq. (18) gives the maximum utilization of a two-group ALOHA svstem What will be the delay
in this system? Returning now (o our custom of measuring $ in,nessages per unit time tand not per
slot), we shall model the delay by

where Gy isgiven by S, = (e e




4. Capture, Power Groups and Partial Coordination

In the models of ALOHA systems presented so far we assumed that in the case of interference,
both messages will be destroyed. But if the colliding messages vary greatly in received power, the
receiver may be able to receive the stronger one correctly even in the presence of the other, weaker,
signal.  The receiver is then said to capture the stronger signal. The capability to capture some mes-
sages will obviously improve every ALOHA system. Let us first sec the resulting improvement in a
centralized ALOHA system, where all messages have one common destination. Roberts [6] proposed
and analyzed a capture model in which the power differences resulted from different distances to the
common destinations. Our approach is different. We shall assume that the terminal population is split
into two groups, that one group is transmitting with more power than the other, and that this splitting is
nurposely done in order to improve system performance. In order to abstract the geometric details out
of the model. we shall adopt the following assumption {13}: The power of the two groups is significantly
different. When two transmissions from the same group occur simultaneously, they will always destroy
each other. When one strong transmission and any number of weak transmissions compete for the ear
of .he common station. the strong one will always be captured successfully. This separation into groups
introduces. therefore, a partial coordination into the random world of ALOHA.

It may be possible to achieve such a coordination between groups by techniques that do not rely
on a power difference between them. A distinctive preamble, for example, may allow a terminal to
successfully receive a transmission from onc group. which we shall call strong. even in the presence of
transmissions from the weak group. In a system which is not perfectly slotied. the first of two interfer-
ing signals of equal strength to arrive at a receiver may survive the collision and be successfully
received. From now on strong and weak should not therefore be taken literally - they do not neces-
sarily refer to transmission power, but simply characterize the group of transmissions likely to win or
lose when competing with the other group.

What will be the resulting improvement if we introduce groups into a heavily lcaded ALOHA
centralized system? If the strong group is selfish it can ignore the weak group, and use the channel as
much as possible. The strong group will then successfully utilize 1/e= 367 of the slots, and will leave
367 of the slots free. (In addition. 276 of the stots will be wasted on collisions). The weak group c¢an
utilize at most 17¢ of what is left free for it. 1e . it can utilize 1/e¢°=0 135 of the slots. and the total
rate of success by both groups will be 0303

The channel can be better utilized it the strong group will not be so selish. To see this let us
now consider the division into groups as a design parameter.

Assume that we have an nfinte population of terminals. and that each terminal contributes
only a minute fraction of the total trathc  While we have spoken of strong and weak terminals, the
important design question is nof the identity of terminals in each group but the portion of the traffic in
cuch group. If we have an extremely heavy load our goal is to tind the division into groups that will
allow our system to utilize the greatest portion of the communication resource avatlable. Let G and S,
be the total offered traffic and the rate of success of the strong group. (5 and S, the corresponding
values for the weak group. For simplicity we shall assume in this section that § and G are measured
per slot size. Using our standard assumption. that the total trathic ofliered by a terminal is a Bernoull
process, independent of the traftic offered by all other termunals, we can write

. G
S, = (I](’ !

. . (08 4
Sz = (I)(’ e !

Choosing G and G, in order to maximize §=5,+4.5, we find that the utilization of a system with two
groups s




From (17) we get the following:

Theorem 4: When the traffic is very steady the transmission range that is optimal when all transmis-
sions must have the same predetermined range is equal to the optimal maximum range when range can
be perfectly adjusted.

Proof: When the traffic is very steady and R is small, the bound of (17) is a good approximation for
S.(R). Using this expression for §. we can continue #s in the proof of Theorem 2.

"
[

This theorem is very intuitive: When the optimal step size is small, the capability to adjust
transmission range is not important, since the overshoot will be small.

It immediately follows that the network quality and the local utilization that were used in
Theorem 2 to characterize the optimal network for very steady traffic when the range is perfectly adju-
stable will also characterize the optimal network when the range must be predetermined.

When the range is perfectly adjustable the one-dimensional network was a special case, in which
giant stepping was appropriate. When the range must be predetermined we see from (16) that S
increases with R. When all transmissions have a range equal to R it must, therefore, be limited even in
the one-dimensional network.

When the traffic is very bursty (N"ST << 1) we expect R to be larger with respect to N, and
shall then use the bound given in (16) as an approximation for §;. When R is large we also assume no
message takes more than two hops and we approximate H, the average number of hops taken by a mes-
sage. by

H = 1+ Probability (distance travelled > R )

The capacity necessary can then be approximated by
C =evR"S + l;—

and the R that will minimize C is now given by solving the following equation:
nevSTR "' = Probability density (distance travelled = R)

For a very large R it is reasonable to assume that the probability density of the distance travelled is
monotonic decreasing and this equation will then have a unique solution. If, for example, the distribu-
tion of distances travelled is exponential we get the following approximate equaiion defining the optimal
R in a bursty system: R/N = In(1/veNSTR""1).

When considering centralized systems we can say that the ALOHA scheme is good when the
traffic is bursty and bad when the traffic is steady. This statement is true in general for ALOHA net-
works t0o. But networks have self adjusting property - by controlling the maximum transmission range
and reducing it when the traffic is steady we can make ALOHA networks (in more than one dimension)
suffer less from destructive interference than the ALOHA centralized system.

In the next two sections we shall consider two other ideas that can improve a centralized
ALOHA system and see what they can contribute to ALOHA networks.

12
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In Theorem 2 we assumed n> 1. The reason for this is that Theorem | can be generalized only
for the case n>1. When dealing with a one-dimensional ALOHA network we get

Theore:n 3: S.. the amount ol contending tratlic hcard at a point, is equal to 2NS, and is independent
both of the need to break message paths into scveral hops and of the policy of implementing such a
break, as long as the policy is applied cverywhere in the same way. That is, as long as & message path
of a given length will be broken in the same way. wherever it originates.

Proof: Consider 4 message that must travel a distance X, and let X, be the length of its i-th hop, where
X X, = X. The i-th hop will be heard at a given point if the path of the message is so placed that the
th hop starts within X, of that given point. on either of its sides. Adding the contribution of all the
hops we see that a message whose total path length is between X and X+dX will always cgntribute to S,

an amount proportional to 2X. In this one-dimensional network we have S=ff(x)dx and
0

N

(]
nl—
0%8

X f(x)dx. S, is therefore given by S, = [ 2x /(x) dx = 2NS .
0

3
O

In one-dimensional networks, if range can be perfectly adjusted we should, therefore, giant-step
whenever possible. Even when the traffic is very steady there is no reason to limit the step size, since
no decrease in S, will follow. One-dimensional ALOHA networks have a local utilization and a net-
work quality both of which are equal to 1/e.

Theorem 2 answers the question of the optimal transmission range when the traffic is very
steady. This is satisfying because ALOHA has an efficiency problem cxactly when the traffic is steady.
When the traffic is bursty there is little need for improving the ALOHA network. When range is per-
fectly adjusted the range fimit R grows when the traffic becomes bursty. and when the traffic is very
bursty giant stepping is the best (for all n}. That is, cach message should be transmitted with enough
range to reach its destination directly (in one nop). These general conclusions change once we consider
networks in which range cannot be perfectly adjusted, as we shall now do.

3. Using A Fixed Range

Assume that terminals cannot adjust the range of their transmissions, and that all transmis-
sions, by all terminals, must have a fixed range R. Since the range of all transmissions is fixed and con-
stant, some messages will overshoot their destinations. The amount of traffic contending at every point
will therefore be larger now than it was when range was perfectly adjusted. S, will depend on R in a
way that involves the distribution of distances travelled by a message, but the following bounds are
simple to obtain:

In an n—dimensional ALOHA network

vR"S <SS, (16)

because at every point we hear at least the first hop of all messages originating within R. In analogy to
(11) we get

S, <vSR" (N+R) an

because the average distance actually travelled by a message when the transmission range is predeter-
mined at R is at most R+N.




Theorem 2: Consider an n—dimensional ALOHA nctwork carrying very steady traffic, where n> 1.
Assume that the transmission range can be perfectly adjusted, but only up to a maximum range R. If R
can be optimized freely (i.e., made as small as necessary) then each transmission will see an ALOHA
system whose local utilization is 1/ne and the network quality will be 1/eVn

Proof: The volume of an n—dimensional sphere with radius R is vR”, where v is a constant depending
only on n (when n=2 v=n). Theorem | will be valid for any n>1. That is. if a message must travel
more than R it should do so in the minimum number of equal hops. In analogy with (5) we therefore
get

S.AR) < vSNR""! an

When the traffic is very steady and when R << N this bound is a reasonable approximation for §, and
we get the following estimate for the capacity necessary when S and T are given:

. - 1 N
= n-1 4+ — L an
C evSNR T R 2
The R that minimizes C is given by
t'n
]
= | — Ry
R l ST (n=1T) ] !

and using this optimal R we find that the capacity necessary is
\'n
C = %n[evST(n—l)' ”l (14)

For that n—dimensional M/M/1 network we get a set of equations very similar to (12)- (14), but in
which 1 is substituted for e. (Compare for example (8) and (10) in the two-dimensional case.) From
(13) we see that the optimal R in an n—dimensional ALOHA network is smaller than the optimal R in
an n—dimensional M/M/1 neiwork by 1/e"” As long as this smaller R is consistent with our model
we can derive from the dependence of C on e shown in (14) the quality part of the theorem.

The local utilization is, by definition. equal to

S _vSNR"!
C C
and substituting (13) into (15) we find that when the optimal R is used the local utilization is 1/ ne.

(1)

Theorem 2 can be immediately generalized to the situation in which the antenna carried by ter-
minals is somewhat directional. Assume the antenna radiates into a cone, which takes a fraction « of
the sphere. This is, of course, a gross simplification of the real radiation pattern, but is consistent with
our simple modeling of transmission range. If we compare the case of an omni-directional antenna to
this case of an a -directional antenna we find that, with any transmission policy, the total interfering
traffic at any point is smaller by a factor «. The optimal R for steady traffic, given by (13), will become
larger by 1/a'/" (we shall not have to push so much towards small R), and the necessary capacity of
(14) will become smaller by a''” But when we compare an a—directional ALOHA network to an
a—directional M/M/1 network we find that the local utilization and the network quality in the optim-
ized structure will remain as stated in Theorem 2. An improved technology (i.e.. directionality) will
help both the ALOHA network and the M/M/1 network. But whenever they use the same technology
a comparison between them will show the inherent cost due to the random access aspect of the
ALOHA network, and this inherent cost is e'’”.
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best possible M/M/1 network scheme is in general a function of S, 7 and the distribution of distances
travelled. For very steady traftic we get. in analogy to (7), that the optimal R is given by

R (9)
N VrNIST

and when using this R the capacity necessary is
CT = WaNST (10;

Dividing (10) by (8) we get that the quality of heavily loaded two-dimensional ALOHA network with
the optimal step size is 1/ve= 607" How did we get this dramatic improvement over the heavily
loaded centratized ALOHA system, whose quality is 1/e=.367?

We may say that every message sees at its destination an ALOHA system whose utilization,
which we shall call local utilization, is S,/C. When the traffic is very steady and when the optimal R is
used we get from (7) that every transmission sees an ALOHA system whose local utilization is 1/2e,
i.e., half the maximum possible utilization of an ALOHA system. The quality of a centralized ALOHA
system with this local utilization is .68. [t is only at much higher utilizations (closer to 1/e) that the
quality of a centralized ALOHA system goes down to 1/e. The need for several hops will bring the
quality of the ALOHA nerwork down. from .68 to .607 . We see therefore that by choosing the optimal
R as a function of burstiness our ALOHA network has gained a self-adjusting capability, and it will not
allow itself to be pushed to higher loads, where it is really bad.

From (8) and (10) we sce that two-dimensional networks with the optimal R show an econoni
of scale when very steady: for a given 7, the necessary  grows only like VS,

Comparing (7) and (9) we see that the optimal transmission radius R in a steady ALOHA net-
work is smaller than the optimal R in an M/M/1 network by a factor 1/ve. The optimal R in both net-
works goes to zero as the traffic becomes very steady. We have implicitly assumed that there always is
a terminal at the end of the hop that can receive our message and forward it. But if R becomes too
small there may not be a terminal so conveniently situated. If R becomes even smaller, our terminal
may not be able to communicate with any other terminal, and the network may become disconnected.
Kieinrock and Silvester {12] treat this issue explicitly. while calculating the optimum transmission range
with a different objective: obtaining the maximum throughput from the given channel, assuming
infinite delay is acceptable. We shall not treat this issue here, but our assertion about the self-adjusting
capability of ALOHA networks must be qualified.

Consider once again an ALOHA network and an M/M/1 network. both carrying the same very
steady traffic. If it is practical for the ALOHA network to choose the optimal R according to (7) then it
will need only Ve times more capacity than the optimal M/M/1 network, i.c.. its quality will be 1/Ve.
But if R cannot be made so small, the quality of the ALOHA network will go down. If the ALOHA
network is constrained to use the same R as the optimal M/M/1 network then its local utilization will
be 1/(e+1)=.269 and its quality will be 2/(e+1)=.538. If both the ALOHA and the M/M/[ networks
carry a very steady traffic but are constrained to use an R that is much larger than the one given by (9)
then the local utilization of the ALOHA nctwork and its quality will be 1/e.

Fig. 2 sketches the dependence of the necessary capacity on the transmission range. in the
two-dimensional ALOHA and M/M/1 networks.

Our treatment of two-dimensional nctworks can be summarized and generalized 1o
n—~dimensional networks as follows:




the necessary C for given N,S and T} is given by

R ___1

N VneN'ST
While we use the term optimal R, equation (7) actually determines the optimal value for the maximum
transmission range. Given the distance a specific message must travel, R determines the necessary
number of hops. and the transmission range of all hops is then chosen according to Theorem | The
capacity necessary when using the optimal R can be obtained from (6) with the use of (7); it is given
by the following relation between CT and N2ST, both of which are dimensionless quantities,

CT = XNeaN’ST (8)

When the traffic is very steady (i.e.. when N2ST>>1) (7) says that the optimal R will be much smaller
than N. The approximations made when writing (6) are consistent with this result, which is also quite
intuitive: Consider a steady system with a given S and a large 7. When we are willing to tolerate a large
T the number of hops can be large, and we can therefore choose a small R. Each message will then be
heard only in a narrow strip along its path, so S, will be small, and the necessary bandwidth will there-
fore also be small. When the traffic is very bursty we get from (7) that R is much larger than N. This
is again very intuitive - when the traffic is bursty there is little contention and therefore almost nothing
is gained by forcing a message to undergo more than one hop. But the exact value given by (7) is not
meaningful when the traflic is bursty, because the approximations used when writing (6) arc not valid
when R is large.

(7)

A general conclusion that emerges is that in a two-dimensional network it is better to limit the
transmission range even if our terminals can adjust their range exactly and have no power limitation.
This veluntary limiting is especially important when the traffic is very steady. and the optimal range limit
R is then given by (7).

How shall we define the qualiy of networks? Clearly one should not compare a network to onc
huge centralized M/M/1 system that carries all messages to one common destination because practical
networks have an advantage over centralized systems: The same capacity can be used in different
regions of the network to successfully transmit different messages at the same time. That is, network
capacity can be spatially reused.

A common meuasure used to characterize access schemes is the maximum utilization they can
make of the given communication resources. This maximum utilization is sometimes called capacity,
especially by authors whose variables are normalized by the slot size. and who therefore do not expli-
¢itly mention the channel bandwidth. We use the word capacity to describe an amount of communica-
tion resources (i.e., the number of bits or messages that can be transmitted per second) and wurilization
10 denote the useful fraction of that capacity.

The quality of a very steady centralized system, as defined by us [7], is equal to its maximum
utilization. But utilization is not a good measure for networks with a continuum of terminals since util-
ization can be arbitrarily increased by spatial reuse. i.e., by limiting the transmission range.

It seems that every network organization must address the question of how to coordinate every
transmission with at least all the traffic that is heard at its destination. Since the best possible system
will coordinate this traffic perfectly, we shall compare all networks to the nctwork that uses the same
technology (i.e.. omni-directional antennas) but that somehow achieves perfect coordination between
the traffic contending at cvery point, and in which transmission ranges are chosen optimally. We shall
define the quality Q of anv network to be the inverse ratio between the capacity necessary for it when S
and T are given and the capacity necessary in the M/M/1 network for the same S and 7. In general
Q <1, and equality holds only for the M/M/1 network itself.  The capacity necessary for this




We shall model the delay of our two level system by the following ad-hoc formula

| + ]
C-25 (C-G/2)-e5/2
This equation gives T in terms of C and S. where G is also given in terms of Cand S by (28). The first
term stands for the repeater-to-station delay, as given by (27) with U,=1/2. The second stands for the
terminal-to-repeater delay. It is also based on (27). with the {ollowing modifications: Since a repester
cannot listen while talking, the capacity available to cach of the terminal groups is C—G/2. §/2 is the
traffic carried by each group, and /e is the maximum utilization of an infinite population ALOHA.

T =

A three-level organization, as shown in Fig. 5,
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Figure 6. Structure of the Three-Level ALOHA System.

can improve the system performance even more, for high loads. [n (he best possible situation, we shali
have only two cases of interference: Two messages trying to reach the same repeater will destroy each
other. and a message trying to reach a repeater that is itself transmitting will be destroyed without both-
ering the repeater’s transmission. In this case the svstem can drive the top level to its capacity, and the
utilization can be 1/2. Fig. 6 shows the quality of one-level. two-level and three-level ALOHA sys-
tems. For comparison the quality of FDMA with 1024 terminals is also shown.
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Four or more levels will never improve the performance of an ALOHA system, as given by our
model. To see this consider Fig. S again: The numbers on the left of the lines in the two top levels
give the traffic per slot that must be offered by the repeaters when the system is driven to its maximum
utilization. The numbers on the right give the rate of successful traffic per slot in each hop. In order
to get a utilization of 1/2, each of the top-level repeaters must be active 1/2 of the time, and will be
successful on the average 1/4 of the time. Each one of the second-level repeaters must be successful
1/8 of the time. and must thercfore be active 1/2 of the time. The capacity available to each one of

the bottom-level infinitc population ALOHA systems is /2, and the delay in each will be
]

T= TIi=esit When the system is driven to its maximum utilization we have S=C/2, and the
burstiness of the bottom-level ALOHA system is §4—T = 4—|— = 78. From Fig. 6 we see that at this
_—“

burstiness a one-level ALOHA system is still beuter than multi-level systems, and the threc-level
ALOHA system cannot. therefore. be improved by splitting its bottom ievel into more levels, even
when it is driven to its maximum utilization.

We have just seen that multi-level ALOHA centralized systems can be better than one-level
ALOHA when the traftic is heavy, because in the top level we can have a contention system with a
small population. which can better utilize its communication resources. Will such a multi-level organi-
zation improve networks’

Let us start with one-dimensional networks, and introduce equally spaced repeaters as the top
level. We shall have the smallest population of contending repeaters when transmissions go only from
one repeater to ils two ncarest neighbors. Assuming omnidirectional antennas we find that three
repeaters, i.€., the source, the destination and its other neighbor, contend at every point. The max-
imum utilization can therefore go up. from 1/¢ 10 4/9. but the amount of contending traffic has also
gone up. from 2NS 10 3INS' The reason for the increase in contending traffic is that when we assumed
a continuum of terminals and considered a given transmission, the amount of traffic generated exactly
4t our destination was negligible and our transmission had to contend only with traffic crossing its desti-
nation. But when we concentrate the traflic in our repeaters the amount of traffic coming out of a desti-
nation is NS, which is not negligible, and must be added to the crossing traffic, equal to 2NS as before,
in order to get the total contending traffic.

In gencral, assume cach repeater has a range to reach k other repeaters, and, for simplicity, that
the distance each message must travel on the repeater-repeater network is a multiple of k. The traffic
coming out of cach repeater is then NS/k. Each contention system will consist then of m=2k+1
repeaters and the total traffic in it is (2k+1INS/k =2mNS/(m—1). Let H be the number of hops
necessary, on the average, in the repeater-repeater level. The capacity necessary for this level is there-
fore

L 2mNS _ H

C = — L0

U, m—1 T

Where U, is the maximum utilization of an m—repeater ALOHA system. U, is written explicitly in
(26), and substituting we get

(29

'.!

ll - il INS > NS 30)
mn

From (30) and (29) we see, even if H is equal to |, that the repeater-repeater subsystem needs more
capacity than the cntirc one-level network! The detrimental effect of concentrating the traftic and
increasing the contention is more important than the gain in the possible utilization of a finite popula-
tion repeater system. Our conclusion here is, therefore, that if range is no problem. concentrating net-
work traffic into repeaters wastes communication resources. Introducing repeaters can. of course. be an
improvement if their range is much larger than the terminals™ range, and if this significantly reduces the
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number of hops a message must take.

In a heavily loaded two-dimensional ALOHA network we saw that the optimal transmission
radius is small. That is. even without repeaters, whenever the traffic is steady we should make our con-
tending terminal system as small and as finite as we dare! Repeaters are not necessary for improving
the utilization of a heavily loaded two-dimensional network. and the extra fevel they introduce is waste-
ful. Repeaters can be very useful, for networks of intermediate burstiness, if ALOHA is used for
terminal-repeater communication and dedicated channels are used for repeater-repeater communication.
For a treatment of such mixed-mode networks see [18].

6. Conclusions

Using ALOHA as an access mode for a communication system consisting of a large number of
distributed terminals is extremely simple and therefore appealing. But a heavily loaded centralized
ALOHA system, in which all messages must reach one common destination, will need e times more
bandwidth than the theoretical best (and impossible!) M/M/1.

ALOHA networks are in a better position. Since messages have various distributed destinations
the channel can be spatially reused: i.e.. various transmissions can successfully use the channel at the
same time if they are separated spatially and do not interfere at their destinations. The contention
between messages is not directly determined by the given traflic, and it can be adjusted by choosing the
transmission range.

By modelling a homogeneous and isotropic network by a continuum of terminals we calculated
the optimal transmission range. A two-dimensional ALOHA network necd be only Ve times worse
than the corresponding M/M/!1 network, even when very heavily loaded, as long as the calculated
optimal range is not 100 small to be practical. The calculated range becomes too smali when only a fuw
terminals are within range of cach other. But the problem of organizing and coordinating a system with
a large number of terminals, which was the original motivation for using ALOHA. has disappeared. and
other access modes can then be used to advantage, though we have not considered any in this paper.

Since ALOHA networks pay & smaller price for contention then do the centralized ALOHA sys-
tems it is harder to improve them by reducing contention. Splitting terminals into power groups can
improve any ALOHA system. especially when the traffic is split between groups in a good way. but the
resulting improvement in centralized systems is much more significant than the resulting improvement
in networks.

In a centralized system all messages must reach the station. and must therefore contend for its
ear. A multi-level organization using ALOHA at all levels can improve heavily loaded single-
destination systems by having only 4 small number of intermediate nodes communicate directly with
the station. Multi-level ALOHA organizations do not help networks, because choosing the transmis-
sion range is a much more effective means for controlling the amount of contention.

24




References

[

2]

31

(71

8

(9l

(10

(121

[13]

Klcinrock. L... "Resource Allocation in Computer Systems and Computer-Communication Net-
works." Information Processing 1974, Procecdings of IFIP Congress 74, Stockhoim, August 1974,
North Holland, Amsterdam 1974, pp. 11-18.

Abramson. N.. "Packet Switching with Satellites." 4FIPS Conference Proceedings. 1973 National
Computer Conference, Vol. 42, pp. 695-702.

Lam. S.. "Packet Switching in a Multi-Access Broadcast Channel with Application to Satellite
Communication in a Computer Network.,” Computer Systems Modeiing and Analysis Group.
School of Engineering and Applied Science. University of California. Los Angeles, UCLA-
ENG-7429. April 1974. (Also published as a Ph.D. Dissertation. Computer Science Depart-
ment)

Kleintock. L.. Queueing Systems. Vol Il: Computer Applications. Wiley I[nterscience, New York,
1976.

Ferguson. M.J.. "A Study of Unslotied ALOHA with Arbitrary Message Lengths.” University of
Hawaii, Honolulu, Hawaii, Technical Report B75-13, February 1975,

Roberts. L..GG.. "ALOHA Packets System with and without Slots and Capture." Computer Com-
munication Review, A Quarterly Publication of the ACM Special Interest Group on Data Com-
munication, Vol. S, No. 2. pp. 28-42, April 1975.

Akavia G.Y.. "Hierarchical Organization of Distributed Packet-Switching Communication Sys-
tems.” Ph.D. Dissertation. Computer Science Department, University of California, Los Angeles.
March 1978.

Carleial, A. B. and Hellman M. L. "Bistable Behavior of ALOHA-1ype Systems.” IEEE Transac-
tions on Communications, Vol. COM-23_ pp. 401-410, Aprii 1975

Fayolle, G. et al, "Stability and Optimal Contro! of the Packet Switching Broadcast Channel”
Journal of the 4CM, Vol. 24, pp. 375-386. July 1977

Yemini Y. and L. Kleinrock, "On 2 General Rule for Access Control or. Silence is Golden,” in
L. Grange and M. Gien (Eds.)), Flow Control in Computer Networks, Proceedings of the Interna-
tional Symposium on Flow Control in Computer Networks. Versailles, 1979, North-Holland,
Amsterdam, 1979 pp. 335-347.

Kleinrock. L. "On Giant Stepping in Packet Radio Networks" Internal Note, UCLA, March
1975,

Kleinrock L . and J Sivester. "Optimum Transmission Radii for Packet Radio Networks or Why
Six is a Magic Number,” NTC 78 Conference Record of the IEEE Nanonal Telecommunication
Conference, Birmingham, Alabama, December 3-6 1978, pp. 4.3.1-43.5

Metzner. J.J.. "On Improving Utilization in ALOHA Networks.” IEEE Transactions on Communi-
cations, Vol COM-24, pp. 447-448_ April 1976.

25




(14]

(151

[16]

[17]

{18]

26

Gitman, 1., "On the Capacity of Slotted ALOHA Networks and Some Design Problems.” [EEE
Transactions on Communications, Vol. COM-23. pp. 305-317, March 1975

Kleinrock. L., "Performance of Distributed Multi-Access Computer Communication Systems.”
Information Processing 1977, Proceedings of IFIP Congress 77, Toronto, August 1977, North Hol-
land, Amsterdam. 1977, pp. 547-552.

Ferguson. M.J.. "A Bound and Approximation of Delay Distribution for Fixed-Length Packets in
an Unslotted ALOHA Channel and a Comparison with Time Division Multiplexing (TDM) "
IEEE Transactions on Communications, Vol. COM-25, pp. 136-139, January 1977.

Lam. S.. "A New Measure for Characterizing Data Traffic.," IEEE Transactions on Communica-
tions, Vol. COM-26, pp. 137-140. January 1978.

Akavia, G.Y.. and L Kleinrock. "On the Advantage of Mixing ALOHA and Dedicated Chin-
nels.” submitted for publication.




N

Hierarchical Use of Dedicated Channels

Abstract

We consider efficient organizations for communication resources which are accessed by o large
number of geographically distributed terminals. Developing a model for systems built with dedi-
cated channels, we answer the following questions: What is the role of hierarchies in organizing
large communication nets? How should a large network be decomposed into smaller parts?
What cost versus performance gains can be achieved by such a decomposition?

Assuming that performance is specified and that the goal is to minimize the necessary cost, we
define quality and burstiness and find the following: Dedicating channels is reasonable when the
traffic is steady (i.e.. not bursty), but when the raffic is bursty the cost of simple dedicated-
channe! systems grows too fast with the number of terminais. By introducing regufar hicrarchical
structures we show that the cost of bursty sysiems can be significantly reduced. The optimal
structure must be balanced. and the ratio of the contribution of the different levels to both cost
and delay is simply determined by a few key system parameters.

We consider two technologies: line and broadeast. The cost of the best bursty /ine system grows
with the dimensionality of the space in which terminals are distributed. The cost of the best
bursiy broadcast system is similar to the cost of one dimensional line systems and is independent
of dimensionality. It follows that bursty broadcast systems have an advantage over linc systems
m two or more dimensions.

The above apply 1o both centralized systems. 1n which messages originate in the distributed ter-
minals but are directed to one common destination, and to netwarks, in which both sources and
destinations of messages are distributed.

Organizing a two-dimensional network imposes a lessalation on the plane. We compare the
three regular tessalations and analyze the relevant tradeoffs. When using the best number of
levels. as a function of burstiness, tessalating the plane with hexagonal ules (and forming a tri-
angular network of communication lines) is usually optimal.

1. Introduction

Designing o communication network for a given traffic requirement consists of balancing cost
and performance. aced with the task of analyzing networks, we must abstract the relevant features of
traflic. performance and cost in order to arrive at o manageable model. In this paper we develop such a
mode! and use it to answer the following questions: What is the role of hierarchies in organizing large
communication nets? How should a large network be decomposed into smaller parts” What cost
versus performance gains can be achicved by such a decompostion?” To motivate the abstractions
necessary to arrive at our model consider the following simple example:

Assume messages originate at m different sources (buffcred terminals). Assume that the appearance of
messages at each source is a Poisson process with rate S/ m messages per second. and that the length of
messages has an exponential distribution. Let us choose the information unit so that the average length
of 4 message is equal to 1. this is simply a convenient normalization. which is equivalent to measuring
communication capacity in messages (of an average length) per second. instead of measuring in bits per
second. Assume all messages are directed 10 one destination (computer). which we shall sometimes
call the station.

27




Consider the two cases shown in Fig. |
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Figure 1. Centralized versus Distributed Terminals.

In both cases all terminals are at the same fixed distance from the station. [n case | all terminals are at
one and the same location. They can. therefore. share a single communication channel. In case 2 the
terminals are spread out around the station. and we shall connect cach one to the station by a separate,
individual channel.

How should we compare these communication systems? Having fixed the structure of both
systems, and since the distances from all terminals to the station is the same in both cases, we shall
ignore for the moment the guestion of distances and cost, and shall characterize both systems by the
relation between the following three parameters:

S Total rate of messages transmitted (messages per second)
T Average total time spent by a message in the system {(seconds)
C Sum of the capacities of all communication resources used (messages per second)

In order to compare th: two systems of Fig. 1 let us first find the relation between S.T and € that
characterizes ecach of them.

In case 1 all sources are in one place and are connected to the destination by « single communi-
cation channel. Fach message will join a queue at the terminal end of the channel, and when its turn
vomes, will be transmitted (o the destination. We thus have @ classical M/M/1 queueing system (1]
with arrival rate § and service rate C (messages per second). The average total time T a message
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spends in the system (in queue and in service) is given by
1

= ——
-5
In case 2 cach terminal is connected to the station by an individuat channel. If C is the total capacity
available, let us connect cach source to the destination by a channel whose capacity is C/m. Each mes-
sage will therefore have to pass through onc of m identical queueing systems (with arrival rate S/m and
service rate C/m each.) The relation between capacity and average time in this system is simply

(1

_ 1 __m
= C/m-S/m C-5§ @)

If the communication capacity we use is predetermined. it is natural to compare the delay in the
alternative organizations. In our case. for a given Cand 8, let Ty and T, be the time spent in case |
and case 2 of Fig. 1 respectively. Forming the ratio of (1) and (2) we get

L =L (3)

[2 m
The M/M/1 system of case | is. with the given assumptions on the statistical nature of message arrival
and length. the best we can achieve. i.e.. we pay the only the unavoidable price for queueing, and noth-
ing more. In case 2 we have the saume queueing effect, but in addition pay a significant amount for the
decision to dedicate a4 part of the channel to each of the terminals. Equation (3) says that a system with
m dedicated channels 1s m times worse than sharing one M/M/1 channel'! For this and other scaling
results see (2]

In our simple example. T,/ T, does not depend on either S or (. But even in the general case.
the ratio of times used to compare two systems is a dimensionless number. It can, therefore. depend
on S and C only via their dimensionless ratio S/, which is the utilization of the communication chan-
nel. usually denoted in gueueing literature by p. When S<< (. we say that the system is lightly
joaded. When § is very near €. we say that the system is heavily loaded. When $ 2 C the system is
overloaded and unstable, we shall not treat this case Both (1) and (2) give the average delay in the
steady state of a stable system.

Equation (3) compares M/M/1 and the dedicated channels scheme when C and § are given.

How do they compare if T and S are given and we want to minimize the necessary capacitv? Let €
and C; be the capacities necessary in cases | and 2. Inverting (1) and (2) and forming the ratio we get
Q¥ ST+1

C,  ST+m

1t 1» not surprising that the dimensionless ratio given in (4) depends on 8 and T only via their dimen-
sionless product ST We shall call the inverse of ST the bursuness [2] of the system. When ST is small
(ST << 1) the svstem is bursey. When ST 1s large (ST>> 1), the system is steady. When the traffic is
bursty there are only a few messages in the system. There is little congestion, and the delay suffered
by messages is mainly determined by the time necessary 1o tronsmit them. The communication
resource is only lightly utilized in a bursty system. When the traffic is steady the communication
resource is heavily utilized and the delay s mainly determined by the congestion.

(4)

Definitions cquivalent to our burstiness were introduced independently by others [4,5]. This is
not surprising, since ST is the only dimensionless number one can form with § and 7. Lightly loaded
systems are bursty, and heavily loaded systems are steady, so we shall sometimes use these terms inter-
changeably. But we shall use the terms bursty and steady when we wish to stress the fact that Sand 7
are given, and that Cis to be determined in the design process. We shall also use the terms bursty and
steady to describe the traftic a given system has to carry.
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Equations (3) and (4) may look very different intuitively. even though they compare the same
pair of systems. If we assume S and 7 are given and compare the needed capacity we see that ¢/,
depends on burstiness: when the system is very bursty (S7T—0) dedicated channels are m times as bad
as M/M/1, when the system is very steady (ST—oc) dedicated channels are almost as good as M/M/ 1
But if we assume that Cis given and compare the delay as a function of load then (3) tells us that dedi-
cated channel are always mtimes as bad as M/M/7 1 Which comparison is more meaningtul”?

In a real commercial environment we may be constrained to use @ communication channel with
one of several predetermined capacitics. Comparing delay will then be the right tool for evaluating
alternative system organizations. and (3} will be more meaningful

However. for the purpose of this paper, we shall assume that capacity can be freely chosen in
the course of a system design  The chient of the design will specity traflic and performance. and we
shail evaluate different designs by the resources necessary in cach of them. While this attitude ignores
some of the real-hife constramnts. we feel w gives @ much better understanding of many important techn-
ical issues

1. Designing Distributed Communication Systems

Why is 1t that the terminals in case 2 of Fig. | cannot form one queue and use one common
channel? One may say that the terminals are distribured in spee, and therefore cannot share a channel
This statement s reasonable if we are comnutted to using lines for communication. but i general 1t
should and it can be made more prease. While lines connect pairs of points. other communication
technologies have the broadcast property . a transmission made by one terminal will be heard by all oth-
ers. Consider the following gedanken cxperniment: Assume our terminals have o strong empathy and
that, as a result. cach one of them senses. immediately and with no crror, the fact that another
becomes ready 1o transmit. Despite being distributed in space such a set of terminals can casily form
one queue and share one broadcast channel We mayv say that if perfect knowledge of who is ready 1o
transmit was available, then being distributed 1n space would have been of no conseguence.

Consider now another gedanken experiment There 1s no empathy between terminals. but there
is a demon who has perfect knowledge of who is rcady to transmit.  Assume also that terminals will
transmit only when instructed to do so by the demon, and that these instructions arrive free and
without delay. Then. once again. the terminals can casily share a broadcast channel: a queue will form
in the demon’s head. and the demon will instruct the terminal at the head of the queue to transmit.
We sce from this hypothetical example that it is enough to have perfect information in one place, f
that one place could perfectly control all transmissions

The problem of real distributed communication systems is that the control of transmissions is
distributed, and must be based on distributed information  The information that is available at cach
place is therefore partial and old. We have no perfect empathy and no cooperative demon. Faced with
this reality people have developed many schemes for deciding which terminal will use which part of the
communication resources at 4 given time. These schemes. often called access modes, usually utilize
some of the following ideas: central control using preallocation (TDMA. FDMA) or polling [6]. reser-
vations [7.8.9]. ALOHA 110}, and carrier sense {111

It would have been nice to be able to completely characterize all possible access modes. and sav
which one is best for which range of system paramcters. But we are far from achieving such a goul
We know no complete characterization of access modes  The performance of many of the known
access modes i1s extremely hard to obtain in an analytic way because they involve complex systems of
interacting queues. While it 1s often easy to evaluate an access mode for a small range of parameters by
simulation, it is hard to use simulation to get insight as 10 which access mode is best for which range of




parameters

Rather than trying to treat the ensemble of ail possible access modes we shall concentrate on
one of the simplest - using dedicated channels This is reasonably good when the traffic is steady. but
bad when the traflic is bursty. We shall assume the communication system has very many terminals,
distributed over very large distances. and ask FFor a given traffic and required pertormance, can the cost
of a very bursty system be reduced by a fuerarchical organizanon? Before trying to answer this question.
let us say how we shall describe traffic, specify performance. and calculate cost.

To spectfy trafhe we shall assume m. the number of terminals. is very large, that terminals are
uniformly distributed in their geographic region. and that all terminals contribute equally to the trafhic.
The reason is that we are interested in hierarchies that arise in the design process, and not in hierar-
chies that are imposed by the topology and traffic requirements. [t is also often true that the uniform
case is the worst case for a distributed svstem if trattic was especially concentrated in some terminals or
regions then the system would be less distributed. In addition we shall assume different messages
appear independently. When we treat very bursty traffic the exact distribution of message interarrivals
is irrelevant, and only S| that total rate of messages, will appear in our formulas.

Delay will be our onlyv performance measure. and we shall ignore the very important issue of
reliability. Indeed. only the average delay T will appear in our formulas, but essentially all results will
remain valid when the variance, range or distribution of acceptable delay values is specified in addition
to the average delay. Meister et al [12] propose and analyze a performance measure that can influence
the variance of delay  We shalf show [ater that we can achieve equivalent results by adjusting our cost
measure.

The cost of communication depends on technology. We shall classify the very many technolo-
gics possible into two groups: e systems and broadcast systems. and shall assume a cost measure for
cach group.

A line cnables the two points at its ends to communicate. The line can be a tight string. a pair
of wires. a coaxial cable, or a light guiding optical fiber. Line-based systems have many advantages, but
depend. of course. on a line arriving at every point that needs to communicate. We shall assume that
the cost of 4 finc system consists only of the cost of lines, and that the cost of a line channel is directly
proportional to the a-th power of its length, and to the b-th power of its capacity. By choosing 6 <1 we
model the economy of scale usually present when building or buying a large capacity channel. When
a <1 we actually can take into account the cost of equipment at the ends of the line, which we do not
consider explicitly.

The second tvpe of communication technology we shall deal with is that of broadcast systems.
The main property of broadcast channels is, that for better or worse. cvervbody within range can talk,
listen and interfere with everybody else: that is, they all hear everyv transmission. When everybody is
within range of everybody else we have a one hop system - every message can arrive from source to
destination in one hop. If the transmission range is less then the distance spanned by the terminals we
have a multi-hop system. A message may have to be transmitted more than once. at first from its
source and then from intermediate ‘relays’. in order to arrive at its destination. In a multi-hop system
it is possible for two different transmissions to successfully use the same broadcast channel at the same
time. if they are not within range of each other. i.e., a broadcast channel can be spatially reused. When
choosing a transmission range we must, therefore, face the following tradeoff: If we choose a large
range we shall need few hops, but will cause a lot of interference and monopolize the channel in a large
region. We analyze this tradeoff, but ignore the following fact: Range is determined by transmission
power. among other factors, and power is seriously limited when terminals are mobile.
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When dealing with broadcast syvsicms we shall entirely ignore the cost of equipment
(transmitter, receiver. antenna, power source) and consider only the amount of broadcast bandwidth
used as the cost of the system. The motivation is that technology will make the equipment cheaper and
cheaper, but that the bandwidth is now and is likely to remain a truly scarce resource, especially as the
overall communication traflic grows. We shall assume the cost of a dedicated broadcast channel with
capacity Cis given by (' and ignore a technology-dependent multiplicative constant. Usually & will be
smaller than one: there is some cost in bandwidth when a separate channel is created, and wide band
channels are therefore relatively cheaper.

The division of all possible communication systems into either line or broadcast systems is. of
course, somewhat arbitrary. On the one hand. a4 broadcast transmitter with a directional antenna and
beam can become part of a line system. as the microwave links of the telephone system show. On the
other hand. a broadcast system like ALOHA can be implemented on a set of lines [13]. Communica-
tion satellites. a prime cxample of broadcast technology, are actually used by the international tele-
phone community as ‘lines’, ie . for point-10-point communication connecting a single source with a
single destination. We consider both this division into lines and broadcast systems, and the cost assign-
ments we made. to be useful abstructions. that help isolate the issue of being distributed. which is our
main interest here.

Real systems are built slowly. Investments have to be based on estimates of future demand.
and the demand in the future is influenced by the existence of the system and the quality of service.
We shall ignore this interaction over time, and assume our systems dare built in order to satisfy the
known demand and service requirements at a given time.

3. Decomposition and Resource Allocation

Having specified our performance and cost measures, let us return to our m equally talkative
terminals, all of whom wish to communicate with the single station. Denote by L the “typical’ linear
dimension of the region over which terminals are distributed, and assume a line-based communication
system is built to connect all terminals to the one station.  Since we assume that the cost of every line
is proportional to the a-th power of its length the total cost of our centralized system must be propor-
tional to L? The total cost must also be proportional to the bth power of the tvpical line capacity.
When the traffic is very bursty the typical capacity must be 1/ T (see equation (1) ), and it follows that
the total cost is proportionat to 1/ 7% The to1al cost I can therefore be written. without loss of general-
iy, as

ll

D= %/ (5)
Given our assumption on the cost of individual lines. the dependence of D on L and on T is an inevit-
able result of the traffic requirements. i.c.. of wanting to communicate (across distances that are tvpi-
cally L) over lines (whose capacity must typically be 1/7.) The f appearing in (5) shows how the sys-
tem cost depends on its being distributed. / contains some geometric constants, and a dependence on
m, the number of terminals. We shall usually ignore the constants. and address the dependence on ni
How fast does f grow with m? Must it grow that fast?

Assume we have a procedure for designing a very bursty centralized communication system.

given m, the number of equally talkative and uniformiy distributed terminals. Such a design procedure
can be completely characterized by its /~function, detined by (3),
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Applying a given design procedure to a communication system with very many terminals may
be tuo expensive. Can we reduce cost by decomposing the system into small parts, and by applying the
given design procedure to each part separately” How should we decompose a large system and how
should we allocate resources to the different subsystems? We shall start with the latter question.
Assume the cost of the j-th subsystem is given by (5), i.c.,

and that the total svstem cost is D=3 D, Assume that the delay measure T is given by the following
)
weighted average

T=Y51/S (6)

where S, is the trattic carried by the j-th subsystem and S is the total traffic. If we now choose the T; in
order to minimize D given T (or in order to minimize T given D) we get the following cost.

1 b+l
D _—_—(ST)”B (7

T(Les)

[ th+ i

where B

Minimizing the cost of a hierarchical structure often involves minimizing B given in (7). which
we shall call the B-term

When resources are allocated to subsystems in the optimal way . which feads to (71, we also get
D ST l L4S*y,

1 ide

—_ = (8)
Dy AY

LS,

That is. the contributions of subsystems to the delay measure and to the cost are directly proportional
10 their contribution to the B-term.

When our subsystems consist of a single line each FEguation (7) is very similar to Kleinrock’s
optimal capacity assignment [16], with the following difference’ by restricting ourselves to very bursty
tratfic we can handie cost functions with any b, not just the b=1 case. When the traffic is very bursty
there is also a simple equivalence between modifying the delay measure to T'*" of Meister et al [12]
and modifying the cost measure by substituting b/k for b.

When writing (6) we have assumed that the routing of individual messages does not depend on
the state of the network. i.e.. routing is not adaptive. We sce that no matter what b is. the B-term is a
concave function of S, and the best routing must therefore result in a tree-like network - it does not
pay to split the traftic from a given source 10 a given destination and route each portion differently.

When the performance measure specified includes the distribution of delay values. equation (6)
muay be too strict. since it imposes a similar distribution on every one of the subsystems. Equation (6)
can then be considered a heuristic. and the resulting allocation may be suboptimal.




4. Regular Hierarchical Structures

Having decomposcd o commmunmication ssstem equation €7 gives @ way 1o ailocate resources o
its various parts. We do not know which s the optimal way to decompose o large system tor our goul
of minimizing cost, so we shall use another heurnste - To mtroaduce it consider the following two-levcl
structure Assume the » termnads wie umibormhb distnbuted g region oft a-dimensional space. and
divide this regron into /' congruent tegions  Place - concentrator i the middle ol cach region. connect
Al P concentrators o the station accordimy to g given design procedure. and connect all termunals in
given subregion to “their concentrator accordmg to the same design procedure. For simplicity ot our
formulas we shall assume that all subregions have the same shape as the onginal region, and will ignore
the constant coetlicients that depend on this common shape and on the dimensionality.

We shall call this hicrarchical system a two-level regudar hicrarchical system where the word
regular refers to the fact that all regions ure of the same size and shape. and that all concentrators are
placed in the middie ot their reions We shall call the communication subsystem copnecting coneen-
trators to the station the rop level. and the subsystem connecting terminals o concentiators the bortorm
level The top level consists of 4 network with the P concentrators acting as termimnals, and the bottom
levet consists of P nctwoirks with o P rermimals ¢ach

Let £ be the tpicad hincar stze of the ongimal a-dimensional region  The tvpical Tinear size ot
cach one of the P subrewions s Lt P and the total tathe arriving at cach concentrator s S 7
Applaing (7 e bath fevels we find that the contribubion of the bottom level to the B-term s

R
Pl ct Pyl Patiiom /”l

Where we Rave shown o phiathy the dependence of 7 on m FPoothe number of terminals in ¢every subre-
gton  The contnbution of the top fevel o the B-term s

ik
18"y ll’)]

Adding wives the B-term of the two-level regular hierarchical system:

Th e
B - ll.’S"] T e A L AV 70 S E (9)

Which P will give the least vost two-level ssstem? Are two levels better than one”? The answer to the
second guestion will follow trom the answer to the first, since when P=1 or P=m the two-level system
reduces to a one-level system This s reflected in (9) since 711)=0 1 when we have to connect one
terminal. which is “umiformly ™ distributed over its region, to a station in the middle of the region there
ts nothing to do. and no cost s incurred.

To find the best P that will mininize B we must sav something about the /~functuon. For sim-
plicity assume that when m iy large the following is a good approximation

fim) = m¥ 1

Assuming that P satisfies m>> P >> 1. so that both P and m/P are large. we can substitute (1)) into
19) and get

T the ]
leLushl [P‘ ‘h0|]+,)l, a """‘l"/”/'/))Y'h"‘ (Il’

Differenuating B with respect to P we see that dBdP <10 when
¢hpr = lg I +(1'nl“'1m/P)”Pl v (12

Substituting the P determined by (12) into (11 we see that the cost of the two-level structure. optim-
1zed with respect to P. is proportional to m” where

4
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Substituting =0 in (29) and searching for the best P, and P, we see that the coust of the best
two-level go-forward system is

D=-"-5+ = =Vlm (30)

Comparing (30) to (25) we see that, for large m, the two-level go-forward system is better than the
one-level system for all values of S7. But when the system is very steady, there is very little to gain by
introducing 4 two-level structure.

Fig. 7 shows the optimal 3 as a function of ST. When the (rattic is bursty we should use regu-
lar svstems (8=1/2) and as ST grows B8 becomes smaller. and the best systems with a very steady
traffic are go-forward systems (8=0). But Fig. 8 shows that the idea of choosing the best place for the
concentrators as a function of ST is almost irrelevant! Fig. 8 shows the cost of the two-level regular
system, the two-level go-forward system and the one-level system as a function of ST. The costs were
normalized, for each value of ST, by the cost of the two-level system with the best concentrator place-
ment for that ST, as given by (29) when 8 is chosen to minimize D. Assume we have to design a sys-
tem with a given S7. and consider the following decision: we shall use the regular two-level system.
with the optimal number of groups for the given ST, as long as it is better than the one-level system.
Otherwise we shall simply use the one-level system. From Fig. 8 we see that if we follow this pro-
cedure. instead of trying to find the two-level system with the optimal routing policy, then our expenses
will be larger by at most 1" ' A similar conclusion applies to networks [3]: if the one-level system is
not good enough we may consider only reguiar multi-level systems, and lose almost nothing.

8. Distributed Dedicated-Line Networks

Until now we have only deait with the centrafized system case. That is. the sources of messages
were distributed, but all messages were directed to one destination, j.e.. the station. We shall now begin
treating the case of communication systems with distributed destinations, which we call nerworks. When
analyzing networks we shall be abie to use many of the resuits obtained for centralized systems. To see
how. consider first one-dimensional networks built with dedicated line channels.

Assume terminals are located at fixed intervals along our one-dimensional networks, and let /
be the distance between anv pair of nearest neighbors. kEach terminal wishes to communicate with all
other terminals. The traffic of messages between uny two terminals is a Poisson process, whose rate
depends only on the distance between terminals. and not on their identity. That is, ail terminals are
identical in their statistical properties. We need the distribution of distances traveiled in order to com-
pletely specifv the traftic. However, most of our results will depend only on N, the average distance
travelled.

Let us assume that our network is infinite’. i.e.. its total size is so much larger than ¥ that an
insignificant fraction of terminals are affected by the boundaries of the network. [t makes no sense to
talk about the total traffic carried. so let S, denote the traffic coming out of a unit length of the network.
D, will similarly denote the budget invested in a unit length of the network.

Our motivation for choosing an entircly uniform universe may now be restated: If some termi-
nal had an especially lurge communication requirement, or if it was especially central in some sense. we
would naturally treat it in a special way when designing a good system. We, however, are interested in
the differentiation between terminals that appears when hierarchies are built in an entirely uniform
emvironment. even though no terminal is special to begin with.
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tig. 4 shows the quality of the one-level, two-level and three-level regular systems for 1024 ter-
minals. When the traffic is very bursty the three-level organization is better. When S7 grows its
advantage becomes less pronounced. and if the curves in that figure were drawn fine enough we could
have seen that the two-level system and then the one-level system takes over. Fig. S shows, for a three
fevel organization, the ratio between the timie spent in every level and one third of the total time spent
mn the systeme g 0 shows, for « three levet organization, the ratio between the number of branches
m every leveland m' ' In both of these last two figures, the convergence of all thiee curves o a com-
mon point when ST=0 is a manifestation of the balanced nature of bursty systems under optimal capa-
city assignment,

Multi-level regular systems are much better than the one-level system when the tratfic s
bursty  Why do they become progressively worse than the one-level svstem as the traffic becomes
steadier?

In the regular systems the concentrators are placed in the middie of their group This means
that some messages will take a route which is longer than the direct distance from their origin to the
station - When the traffic is bursty. this eftect is negligible compared with the gains resulting from shar-
ing the jong fines. But when the truttic is steady. sharing leads only o a small gain. and the extra dis-
Lnee travelled s significant. When ST is very large. we see by comparing (24) and (26) that the two-
level regular system costs LS/{4 P) more than the one-level system. This extra cost is a direct expres-
sion of the extra distance travelled. Half the terminals, i.c.. those terminals whose concentrator is
turtker away from the station than they are. will have to travel an extra distance equal to twice the dis-
tance 1o then concentrator. The average extra distance trivelled is therefore simply the average
ternunal-concentrator distance. which is equal to L/7t4 )

Wo can decrease the extra distance travetted by placing the concentrators acarer o the station Let us,
for simplicity, adopt the policy that all concentrators will be placed so that a fraction 8 of their group
will be on the side near the station. In analogy with (26) we get that the cost of the two-level svstem
built with this policy is

L . ) L
e L IR B VL LN B 4 (29
) 3 S 3P, ] B 2
where
B %\/2/)1 ! % [””‘L” BVP
When g=1/2 this equation reduces. of course. 10 (20),

For o given value of ST, which Py Py and 3 will give the least cost system?  For a given g.
finding the hest Py and P, s casy. and the best 3 can then be found numerically. As is intuitively
clear, Yor bursty trathe the best g8 s cqual to 172 When the taflic becomes steadier the best 3
becomes smaller. and when the tralhie is extremels steady the best pois equal 1o zero.

I is interesting 1o note that, for any given 3, the system vith the optimal group size abeys a
halince principle: The excess budget is invested equally i the two levels and the average delay in the
o tevels s the same

When #=0 the system has o nice property that we formalize thus A communication system in

which the length of the route taken by anv miessaee s cqual o the doect distance from its source (o
destination wall be called o go-forward svstem
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Let D) be the amount of money invested at the concentrator station level (the top level) and
D> be the amount invested at the terminal-concentrator fevel (the bottom level). Let T and 75 be the
average iime a message spends in the top level and the bottom level respectively. From (23) and (27)
we get the following
[)l'L-S/4 Tl |+L) ST '2 ’
e e = - - — f‘
l)_v - L.S/(4Pl) ]3 8 m

The tirst equality is not specific to regular systems. It follows directly from (22) that whenever we con-
sider two sets of lines in a communication system with an optimal capacity assignment, the ratio of
their contribution to the average delay is equal to the ratio of excess the budget invested in them. The
second cquality sign shows how both of these ratios depend. in a two-level regular system, on ST

When ST—0, (27) shows that Pi=P, and (28) 15 then just a specitic case of (8}, every regular
two-level system must be balanced when bursty. When the system becomes less bursty P/ P, T/ T,
and D/ D, grow. There arc more branches than leaves per branch. more of the budget s invested in
the top level. and the message spends more time in the top level. When ST becomes large enough.
i.c.. the system becomes very steady, we get from (27) that P, is less than one! This means that for
large ecnough ST a one-level system will be better than a two-level system. Our optimized two-level
svstem is trying to achieve the one-leve! performance by “eliminating” the unnecessary bottom level, or
at least by lessening its effect.

r-level regular systems can be optimized by applying (27) and (28) to ¢very two conseeutive
levels. As an example. let us solve the three-level case.

A three-level regular svstem will have P, branches at the stem. cach of which splits into P>
twigs. cach of which carries P fcaves. The two top levels can be considered as a two-level regular sys-
tem with PP, terminals. The two bottom levels can be considered as a sct of Py identical two-level
regular systems with PP, terminals, cach with a total throughput S/P,. PP, and Py must satisfy

PleP‘=m

Applying (27) 10 the two top levels and to the two bottom levels we get

P, 9 S(T\+T)
SRR

P, 8 PP,

P, 9 S(Ty+Ty

=] 4 =
P, ! 8 PPy

where T, T; and T; are the average times spent in the top, middle and bottom level, correspondingly,
and they satisfy

T\ +T)+T:=T
Applying (28) to the two subsystems, we get

_T_l ) [ ﬁ 172

T, P,

T, P, )"

T, Py

We therefore have six equations tor six unknowns  While we do not have an analvtic solution for
them. a numerical one is easy Lo obtain.
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SLe
¢ =542 SL (22)
I“ 2.\/‘8./1‘/"
where
D=FS1, JI lz\fw] (23)
and
- a
D, = r ): S L,

A certain minimum budget 1s necessary for carrving the given trattic. even if we are willing to tolerate a
very large T D, 1s the excess budger, invested in order to make the delay finite

We shall now consider in detail the case of one-dimensional centralized systems. in which the
cost of a line is directly proportional to its length, e, a=1 ) Let our mterminals be equally spaced
on a line segment of length L. and let traftic be evenly divided among them.  If we create a one-level
star network Gie., connect every terminal 1o the station by a direct and private line}, assume that
m>> | and substitute integrals for sums. we get from (23) that the cost of this onc-level system is

D 24)

]

What would the cost be il we could have used a single line serving a o single M/M/ 1 system”?

Howe have the same load 8, and the average distance a message has to travel s L/4 as above,
then in order to get the same T'from an M/M/T system our budget will have o be

l‘.

D=t
4

l
S+ = (25)
I l
Delimng the quality Q of a system 1o be the inverse ratio between its cost and the cost of the best pos-
stble M/M/T svstem, and dividing (250 by (243 we get that the quality of the one-level star system is
Hor m>>1)
ST+

I L L
¢ ST + 8m/9

Consider now the regular two-fevel system with £ equal groups and P, terminals in each
group.  Assuming that the star nctwork is built at bath levels. we get from (23) the following relation
betveen total cost and performance of this two-level system

A ! 27 : e
D= =S+ —) + 22 (p'- + Pl (26)
3 P, 97 1 :
Fora given Sand 7. what should P, and P, be 10 minimize D7 Treating Py and P, as real variables we
see that the optimal Py oand P are related through

PL_ |, 9 ST

- (27}
P, 8 m
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The gencralization to r levels is immediate  The best r-level regular system must be balunced
That is. Py=Py= - =P, =m' "and all individual channels at all levels have the same capacity  The
relationship between cost and performance is

The best ris easily found to be equal 1o Mt/ o+ 1) and when this number of {evels w used
we get that for all 1 P, =2 and that

/):li

T

b hel
o
—==-Intpp) (20
‘h+|

Kamoun (15] found similar results when optinuzing hierarchical communications networks with other
objectives

If spatial reuse is not perfect and there 1s somie interference between groups we have 10 modily
our formulas shghtly. Assume the groups at all but the top level can be colored with ¢ different colors
so that no two groups of the same colors at the same level interfere with cach other  Tn an revel we

] !

can now write T = A} — + —

+ -+ ?l,“ and D = P+ q[Pz( LR +P,('r"| Minimizing
.

b
Y- REN] } theliy bt
D by choosing € given T'we get 7 = [l;l ploeen rquzi + -+ [qP,] ) I'he besi

P, sausty P = ¢P,= - - = qP, and using these best values we have
L) b
D= 7 r”"lmq' 'l 120

We expect g to be a small imeger. When mand rgrow (21) will give a total cost almost g umes greater
than that given by (207, But in both cases we see 1that when using dedicated broadeast channels and the
best number of fevels the cost of i very bursty system grows like Pn (a1 and is independent of the
geometric dimensionality of the system. The cost of regular hierarchical line networks, given in
Theorem 2, depends very much on the the dimensionality of the space in which the terminals are dis-
tributed. It seems, therefore, that dedicated broadeast channels have « signiticant advantage over dedi-
cated lines, when building lurge bursty systems distributed in two or more dimensions.

7. Hierarchical Organization of Non-Bursty Line Systems

So far we have dealt only with extremely bursty svstems  Can a hierarchical organization
improve the performance of systems that are not bursty !

To answer this question for line networks we have 10 solve the capacity assignment problem
when the traffic is not extremely bursty. This is almost impossible ¢ do explicitly unless the cost of @
line is directly proportional to its capacity. which we shall assume in this section  (That is, b=1))
Another greatly simplifying assumption we adopt is the independence assumption [16]. According to this
assumption we analvze the network as if the length of each message is chosen and rechosen indepen-
dently, a1 each step along its path, from an exponential distribution; and as if arrival of messages at cach
line is a Poisson process independent of message length. Let €, L, and S, be the capacity, length and
traffic of the ~th line. The average message delay in geuting across the ~th line is then modelled by
T = —(——L—S— and the source-destination delay. averaged over all messages, is T=L8 7/S The cost of

¢ ]
the ~th line is D,=C, L% Minimizing the total cost D =XD, while T is given by choosing (. or
minimizing 7 while D is given, we get the following solution for the optimal capacity assignment |16]
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Figure 3. Dedicated Broadcast Channels in a Two-Level Organization.

When the traftic is very bursty the average ume spent in this two-level communication system
is given by
|

N

T=k
Het &

where & is a constant depending on the scheme used for splitting a channel into dedicated subchannels.
(For Frequency Division Multiple Access k=1, for Synchronous Time Division Multiple Access with m
subchannels. k=0n/24+ 1/ m). The cost of this two-level system is

D = P|('lh+ PI(‘Zh

Our design task is 10 minimize the necessiary budget D, when 7 and S are given, by choosing
¢y and C,. and by choosing P, and P, subject to P \Py=m .

By symmetry it is obvious that when m>>1 and two levels are better than one then the best
choice is Py= P, and Cy= (', That is, the best two-level regular hierarchical broadcast system must be
balanced. Using these best values for P,.P,.C) and (', we get

kh b ,
D= 7; pLAFTE
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to the best, e, Teast cost. system Feas quite clear that the concentrator should not be placed in the
center of its group but closer to the station 1 is quite possibie that groups further away from the sta-
tion should be larger and that messages coning trom alar should cross maore levels on their way to the
station. (This will naturadly occur in regular systems oo when we pote that concentrators will be colo-
cated with some of the terminals. as shownon g 0

it

COOQOOOCOOLOCGLOLOOLLOOOCOCOO

Figure 2. Hierarchical Organization ot a One-Dimensional Dedicated Line System.

Some specitic heuristics that perturb the regular stracture shghtly were analyzed m [3]. but only a con-
stant improvement was obtained  We suaspect that no system will have a cost growing more stowly with
mthan m' 9" (See also discussion at end of section X))

6. Dedicated Broadcast Chaanels

In previous sections we saw that o hierarchical organization can significantly improve the pertor-
mance of a system based on dedicated hines, especially when the system is bursty. The bisic cause for
improvement was that instead of having long lines with a small capacity dedicated (o each individual
terminal we could use short individual lines. The long lines were shared by more traflic, and the capa-
city invested in them could, therefore, contribute more to improving the performance.

If the communication resource we have is a broadceast channel. whose cost depends on capacity
only, it seems that channels used for short distances are just as expensive as those used for long dis-
tances. So how can a hierarchical organization help? The crucial fact here is that broadcast capacity can
be reused spatially. That is, it can be used independently and at the same time in (wo or more separate
areas. A long range transmission prevents others from using the channel in a large region, and this
distance-related “cost” will be explicitly accounted for in the capucity atlocation process

Let us, once again, create a two-level regular hicrarchical system by dividing the meternimals
into P, groups with P, terminals in each. We shall give cach group a concentrator. but shall now call it
a repeater, this being a more common name when radio networks are discussed [14]. Dedicate a capa-
city C; to every one of the repeater-station communication subchanners. Dedicate a capacity ¢ to
every onc of the terminal-repeater communication subchannels and assume that these subchannels can
be used by every one of the groups to communicate with its repeater, without any interference from
other groups. That is, we assume spatial reuse can be done perfectly, without any waste in capacity or
degradation in performance. This is & reasonable assumption if, for example, cach of the terminals has
a directional antenna pointing at its repeater only or il the repeaters are separitted by hills, so that every
transmission is heard only by the repeater 1o which 1t s meant. Fig. 3 shows our model for this two-
level system.
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Consider the regular hierarchical systems built with o star network at cach fevel. What will be the effect
on cost if we change the specitication of the altowed delay variance? Consider two extreme cascs: In
the first, only the average delay is specificd. In the second, Ict us assume that the average delay
suffered by messages from any terminal in crossing a given subsystem is the same for all terminals.
The comparison between these two alternatives depends on geometric constants, which we have sys-
tematically ignored until now since expressing them analytically is usually impossible. To simplify the
geometric calculations assume, in this section only. that the region over which terminals are distributed
is an n-dimensional sphere. even though a spherc cannot be divided into equal parts similar to itself.
Consider lirst a one-level star network with only the average delay specitied. The B-term can be
immediately derived from (7). Assuming the number of terminals is large and approximating sums by
integrals we get

ip+ )
= ——L(—bil‘)—-lmS”L”l '

nib+l) +ua

and

|
Dy=—--B, "
tosTr !

where the subscript * 47 stands for “average’

When a uniform delay is specified D can be written directly, since all channels must have the
same capacity. and we get
m n v

D, = %IAV(’I‘GX(‘ of Lll = —7—;;7; 3

where the subseript “ 47 stands for “uniform’. Forming the ratio we get

hel
Dy

Do nlb+l) +a " (19)
D,

n{b+1) atn

tguation (19) was derived by considering one-fevel systems, but it is valid when comparing r-level sys-
tems and when comparing svstems with the best r. which is independent of the delay distribution
specified. bguation (191 shows, therefore, the additional cost of demanding a uniform delay versus
demanding only an average delay.

How Jarge is the ratio given by (1997 1t has its largest value when a=b=n=1, and is then
cquitl 10 978 That is, if a system with only the average delay specitied is not acceplable. the delay can
be made uniform at an additional cost of no more than 12.5 per ¢cent!

5. A Lower Bound?

Theorem 2 shows that by using the heuristic regular hierarchical constructions the cost of very
bursty centralized dedicated line systems can be made to grow onlv slightly faster than m' " (The
growth of cost with m can be bounded from above by an exponent of m arbitrarily close to 1—a/n) Our
regular hierarchical structures have the following properties:

h A concentrator is placed in the middle of cach group
2) The terminals are divided and subdivided into equal groups.
3) Every message crosses the same number of levels on its way 10 the station.

These properties were adopted in order to simplify the analysis of regular svstems. but they do not lead
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The argument of the previous paragraph has the flavor of an existence proof: [t shows that by
having enough levels the cost can be made to grow as an exponent of m arbitrarily close to 1—a/n. As
m becomes larger, using more and more levels is justified. What is the best number of levels tor a
large but fixed m? To answer this question we must consider the constant coeflicient multiplying m™ .
This constant, which was ignored until now, grows with the number of fevels, and therefore tempers
the trend towards morc and more levels.

I'he f-function and cost ol a system consisting of r levels. cach of which is built according to a
given design procedure, can be calculated explicitly. Let P, be the number of terminals per group in
the ~th level, starting from the top. Rather than trying to optimize the overall structure directly. note
the following: Every two consecutive levels in an oplimized r-level system must be optimal as a group
of two-level systems. Equation (12} can therefore be rewritten as

gb+lprg_|+a"'=lg-]+a/"]b+lp,+lk (1s)
and (12) can be generalized into
B I—(1-a/n)/g t16)
B;H

where B, is the contribution of the i-th level to the B-term. From (15) and (16} we get the following.

Theorem 2: A design procedure for n-dimensional centralized systems whose cost is proportional to m¢
where g >1—a/n can be improved for large m by a multi-level regular organization.

When 1—a/n#0 the best number of levels is given by

rib+1)/ g in(g/(g—~1+a/n)) = U-a/n)intm) (17)

and the cost of the system. when using this r, is proportional to
h+i
m(l—a/n)/(b*li_] (18)

When 1—a/n=0 the best number of levels is given by

4
ey in(m)

and the cost of the resulting system is proportional to [in(m)]®*! In both cases. when the optimal
number of levels is used, the number of lines in all groups at all levels is the same. and must therefore
be given by m'’".

Proof: See appendix.

When a is smaller the best regular hierarchical svstem has fewer levels and leads to smaller
improvements, since it is harder to save by shortening individual lines. When b is smaller the best sys-
tem has more levels and leads to larger improvements, since common large capacity lines become more
economical.

Example 2: Let the given design procedure be to build a star network. That is, g=1. Let a and b be
equal to . From (17) we see that the optimal number of levels for a two-dimensional system is given
in this case by r =log,m. and that we should have 16 lines in every group. The cost of the resulting
system is

D‘:-—g:[m"‘— l’z

where we use = to denote 'is proportional to’.
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2
h~ —8 (13
2g--1+a/n

When g > 1—a/n we have g > k. That is, when using the best P. as given by (12), we have a two-level
structure whose cost grows with m more siowly than the cost of the one-level structure. When
g>1—a/n and m>>1 our use of the approximate (10) is consistent. since our best P does satisfy
m>>P>>1 We can summarize the above discussion of two-level regular hierarchical systems by the
following:

Theorem 1: A design procedure whose cost is proportional to m* where g > I—a/n can be improved for
large m by applving it separately to each level of a two-fevel regular structure. The best P (number of
groups) is given by €12). The cost of the resulting two-level structure is proportional 1o m”, where his
given by (13). When the best Pis used, the contribution of the two levels to the delay. 10 the cost and
to the B-term satisty

T P _ B _g-ltain (4
anlmrn &

Th«mmn [)bm'mm
Proof’  Substituting (12) in (11 we get B/ Boopom={g~1+a/n)/ g The other two equalities are true
whenever capacity is optimally allocated, as shown in (8).

|

We shall paraphrase (14) by saying that the optimal two-level regular structure is balanced. The
contribution of both levels to the delay and their share of the budget must be in the proportion given
by (14). The right hand side of (14) decrcases when g decreases. P also decrcases with g and there
will be less groups in the top level. We may say that when g is small most of the system migrates to
the bottom level. and that when g is small enough two levels become unnecessary.

Example 1: When the original design procedure consists of butlding a star network we have g=1. and
(13) reduces to A -=nita+n). That is. the cost of the optimal regular two-level star system is propor-
tionad (o om0 while the cost of a one-level system is propartional to m. When g=1 (14) reduces
Ly

T/. o _ D 1op _a

Tbuuum

and we get that the two levels must be balanced in a way that depends on the dimensionality of the sys-
tem and on the cconomy of scale of long lines. but is independent of the possible cconomy of scale
IMVOIVINE capactty.

/)hnlmm n

8]

If two levels are good, will more levels be better? Equation (13) already contains the answer:
Decomposing a given system into two levels and applying the original design procedure to each can be
considered as a new design procedure.  Applying this new procedure to two levels is equivalent to
applying the original procedure 1o four levels. Wnen g>1—a/n it follows from (13) that A>1-a/n
and therefore four levels will be better than two when m is large enough. In general, let g, be the
power of m characterizing the resulting cost and f-function when the given design procedure is applied
to 2 levels. Equation (13) can be rewritten as

2
&
Koy = =7

where g s the power of m characterizing the direct application ol the given design procedure to one
level 1t s easy 10 see that when g > F—a/n the sequence {g) is monotonically decreasing and con-
verges to 1 oa/n
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Consider a network in which cach terminal is connected to its nearest neighbor on each side, as
shown in Fig 9.

LN N Y

N AN ANAC

Figure 9. The One-Level One-Dimensional Network.

Let € be the capacity given to cach line. We shall call this network the one-level network  Every mes-
sage goes, on the average. through N//ines on its way from source to destination. and the traflic n
each linc is NS,/2  Hence. the average message delay is given by

' = ———— BRI

(—NS,/2

Assume that the cost per unit length of a haif-duplex line is equal to its capacity. i.c.. a=b=1. To cal-
culate the budget per unit length necessary for satisfving a given T and S, via the onc-level system, we
solve (31} for Cas a function of N, 8, and T. and then multiply by two, since cvery unit interval has
exactly one line carrying trafhic in cach direction. The result is

D,= NS, +2M/T (3

where M=N/!is the number of terminals contained in the average path.

It seems that NS,. the tratfic coming out of a portion of the network whose fength is equal to
the average distance travelled. is a natural traffic measure in a one-dimensional network.  (After all. §,
has the dimensions of traffic per length, and what other natural length except N do we have 1o multiphy
S, with in order to get something with the dimension of trattic?) The natural dimensionless parameier
we shall use to characterize the traffic is NS, 7. When it is small we shall call the tratfic bursty, and
when it is large we shall call the traftic steady.

Let us double the number of terminals per unit length, while keeping the tratfic per unit length.
and the average distance travelled by messages constant. Each terminal will now generate half the
traffic a terminal generated in the original system. The new network has the same N and S,, but M
became twice as large. M plays in (32) the same role that m played when we discussed centrafized sys-
tems. It is a natural measure for the network being distributed, and characterized the extra expense
incurred because terminals are not all at one place. We conclude from (32} that the fact that the net-
work is distributed poses no problem when the traffic is steady. (When NS, T>>1 the second term in
(32), which is the only one that depends on M. is negligible compared with the first.) But when the
traffic is bursty, the system cost is essentially proportional to M, i.e.. the cost is then strongly dependent
on how distributed the system is.

Can hierarchical organizations help networks? Can we use concepts introduced previoushy for
centralized systems to characterize good hierarchical networks?
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9. Hierarchical Line Networks

Consider now a-dimensional networks in which the cost of a line is, once again, equal to the
product of the a-th power of its length times the b-th power of its capacity. Let N be the average
source-destination distance to be travelled by messages, and assume the size of the networks is much
farger than &, so that edge effects can be ncglecied. Let M be the number of terminals in an »-
dimensional cube of size ¥ The volume occupied by every terminal has theretfore a typical linear size
equal to N/M'™.

Let us form a one-level network by connecting every terminal o a small number of near neigh-
bors. The typical line Jength is N/MY" and every message typically goes through M' " lines. The cost
per unit volume is therefore given by

~ Y n+b aln
D _‘lenl‘ - ThM(+ a)

To build a hierarchical system we shall introduce stations, connect every station to a few of its
near neighbors, and assume messages are routed thus: Every message will go from its source terminal
10 the nearest station, from it to the station nearest its destination using the inter-station lines, and
from that final station to its destinition. Let L be the length of the typical inter-station line, and let
1/L" be the density of stations.

When networks are very distributed G.e., M>> 1) a good placement of stations will usually
satisfy N>> L >>N/M' " We shall call the inequality N >> L the assumption of long distance travel
and consistently use two of its implications: The portion of tratlic that can reach its destination without
getting 10 any staton is negfigibic. and the average line of sight distance travelled by a message from
the station near its source o the one near its destination is approximated well by M. The assumption of
long distance travel allows us therefore to ignore the distribution of distance travelled. Considering this
distribution is of no importance when optimizing a multi-level structure with M >>1 {3].

It we assume that every terminal is connected 1o its station by a direct line we get a two-level
systom. Using the assumption of long distance travel we can calculate its cost thus: Let 1/ T, and I/ T,
be the typical capacity of lines in the inter-station (top) level and the terminal-station (bottom) level
respectively. A typical message takes 2 hops on lines in the bottom level and N/ L hops in the top level
Ggnoring a small geometric constant.) The average time a message spends in getting from source to
destination is therefore

N -
T = "L— fl * 2,2
Let there be p terminals per station. The typical length of lines in both levels is L, and the cost per
umt volume is therelore
M

D, = <
N

A A
p TP TS

minimizing 2, by choosing 7 and 7T, given T we get, in analogy 1o (7).

where B = (N/L)P/0*8 plite* 1l 90721 The p that will minimize D, must satisfy
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(M/p)t "= 2" (33

When this best p is used we have, independently of the geometric constants neglected when writing
(33). that
I)Mp _ Bmp _ d

Dhulmm Bhnumn n+b—ua

(34)

D -~ Nu*anh‘”_u’ ihen)
1 Tb
Equation (34) shows, once again, that the best two-level system is balunced. but the optimal
investment ratio for networks, given in (34)_ s different from the optimal investment ratio in central-
ized systems, given in (14).

r-level networks, with r—1 levels in the terminal-station part. can be solved by applying (33
and (34) to the top two levels, and by applying (135) and (16) to any other two consceutive levels. But
the network with the best number of levels can be more simply characterized by applying Theorem 2 to
the terminal-station part. i.e.. by assuming that every one of the centralized systems connecting termi-
nals to their station has the best number of levels. Assume that the inter-station distance is L and that
the number of terminals per station is p. When @ #= n we get from (18) that the cost per unit volume of
the terminal-station levels is

bl
LI CE R Py u,q;_[' (351
L" TS "
Using nN"= ML" 1o express L in terms of p we sce htp\ul when p>> 1 this cost is a slowly growing func-

. ! .
Hoamithel The top-level cost is, when p>> 1, a slowly

tion of p. proportional to p*" '|p
decreasing function of p. and the best p is therefore of a magnitude similar 10 M. When the tratlic is
very bursty and M >>1 the cost per unit volume of a network with the best number of levels can
therefore be roughly given by

doon
D, = ANV 3o

T
Continuing the discussion of a possible lower bound for the cost of line systems started in section 5 we
can say the following: If centralized systems existed whose cost grew more slowly with p than p' ¢ 7
then instead of (35) we would have that the cost of the terminal-station levels 1s a decreasing function
of p. The overall network cost would then be a decreasing function of p and of L and the best L will
satisfy L >> N. While not impossible. it is very strange that the best network will foree a message to go
10 a station that is much further away from its source than is its average destination.

In analogy to (36) one can see (3] that the cost of very bursty broadcast networks and of onc-
dimensional line networks is proportional to [log (M)1"*' and broadcast channels are once again supe-
rior to lines for a bursty system distributed in more than one dimension.

10. The Geometry of Networks

In deriving (36) we neglected various geometric constants, since we wanted (o show in the sim-
plest possible form how the cost of very bursty networks depend on system parameters. (While (36)
does not contain §,, it is valid only when NS, T<<1.} How will the geometry of the top level
influence the cost of networks”? We shall treat only the case of two-dimensional linc networks.




It is well known {17] that there are exactly threc regular tessalations of the plane: i.c.. three
ways 1o cover the plane with identical regular polygons. If we place a station in the middle of each tile
and connect it to its nearcst neighbors we get the three networks shown in Fig. 10. We shall call them
the square, triangular and hexagonal network, where the name applies to the regular polygons created
by the lines in the network. Note that we do not draw the nles (the regions around each station), but
the duad graph showing the communication lines between adjucent stations.  For example, tessalating
the plane by hexagonal tiles produces a bechive-like structure which leads to our triangular networks.

Is there a common basis for comparing these three tessalations” [or ¢ preliminary comparison.,
let us assume that all traffic originates at the statiens. and is destined to many points in the plane. not
necessarily to other stations in the network. Every message will use the given network o arrive at the
node closest to its destination. We shall not consider how the final node delivers each message to its
exact destination at this time. Let us also assume that the distribution of traffic coming out of a node
has a radial symmetry, and that the average line of sight distance from the source node to the destina-
tion node is N. The average distance actually travelled by a message will be larger, because there may
not be a line directly to the neighborhood of its destination. Assuming the average distance travelled is
much larger than the inter-node distance we can say that the distance actually travelled is 8N, where
is a characteristic constant for each of the possible networks.

~

4 e .

In the square network we have & = —-—f Ucos#l + [sinelide = = = 127 A similar simple cal-
r=() w

culation gives that in a trigngular network =110 _ For the hexagonal network we used o computer

program to find that 8 is approximately equal 1o 1.30

Let S, and D, denote the total traffic and budget per uni arca. Let 4 be the area per node
Each node will generate new messages at a rate of 45, 1f L is the internode distance then the number
of hops taken by a message, on the average, is SN/L. Therefore the total traffic passing through each
node will be 45, 8N/ L messages per second. Let € be the number of nearest neighbors each node has.
which is also the number of (half-duplex) lines per node. The total tratlic per fine must therefore be
AS,8N/Le If Tis the required total average delay. the delay suffered when crossing a given line must
be TL/8N, and the capacity necessary for cach line is
aN
As,——‘- + 2y 37N
! LT
Let us first assume that a=b=1. The total cost per node is then found by multiplying (37) by L, the
length of every onc of the lines, and by ¢, the number of lines per node. If we divide by 4. we find
the cost per unit arca to be:
SN
D, = 8NS, + £ (38)
T4
Let M be the number of nodes in a square whose sides are cyual to V. The area per node is then
N/ M. Substituting this for 4 in (38) we get

M 1

N T
In a two dimensional network, the natural traffic measure is NS,. and the burstiness mcasure is
NS, T. When the traffic is very steady only the first term in (39) is significant. The best network will
then be the one with the smallest 8, i¢., since the triangular network imposes the least extra distance
on messages. 1t is the best of the three for steady traffic. When the traflic becomes very bursty
(NS, T<<1) only the second term in (39) is significant, and the hexagonal network is the best
because 1t has the smallest €d.

D, = 5NS, + (39)

n
[9%)
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Figure 10. The Three Regular Tessalations of the Plane.
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Fig. 11 shows the cost of the three networks, normalized by the cost of a hypothetical network in which
d=e=1 . As expected, the triangular network and the hexagonal network are best when the traffic is.
respectively, very steady and very bursty. It is somewhat surprising. though, that the square network is
never the cheapest of the three.

For general @ and b, i.e.. not necessary equal 1o 1, we get from (37)
b
D, = %EL" AS,ON/Le +N/TL

L does not 1n general disappear from the cost formula, but we can write 4 =nL?% where 7 is a con-
stunt, depending on the geometry of the network, and given in Table 1. When comparing the three
regular networks we shall assume that 4 and the density of terminals are common to all three. We
then find the following: When the traffic is very bursty the best network is the one having the smallest
en'? °28% When the traffic is very steady. the best network is the one having the smallest
€ byt al 15

1t is quite intuitive that as b grows smaller the advantage of the hexagonal network grows, since
it concentrates its traffic on fewer high capacity lines that are becoming relatively cheaper. As a grows
smaller the advantage of the hexagonal network decreases, since its line channels are shorter. Using
the numeric values for 8.¢ and n we find that of the three regular networks. the hexagonal is always
fi.e . independently of g and b) the best when the traffic is very bursty. When the traffic is very steady
the hexagonal network is better when 5< 065 +0.194. otherwise the triangular is better.

There is. of course, no reason to limit our consideration to the three networks in which all
nodes are equivalent and in which lines connect only nearest neighbors. When the traftic is steady. we
can connect every node to more of its neighbors, in order o lessen the distance messages have 1o
travel. However, since the triangular network already has 8 =1.10, the most we can gain by introducing
more and more lines is 10% . When the traffic is bursty there is room for a lot of improvement. and
that is where hierarchical structures become interesting.

Newell [18] gives a general discussion of networks with an economy of scale in their cost. He
points out that even if the node placement and the traffic requirements are symmetric. the best network
will in general nor have the same symmetry. For example, the two-dimensional square network with a
large M and & bursty traflic can be improved by deleting every other vertical line  The resulting struc-
ture. shown in Fig. 12, forces some messages 10 go an extra distance, until they can find a vertical line.
But as a result only half as many vertical lines are necessary, and when the traffic is bursty this will
more than compensate for the extra distance travelicd

In our model there can be three independent sources for an economy of scale: when b<1 large
capacity lines are refatively cheaper, when a <1 long lines are relatively cheaper, and when the traffic is
bursty shuring unused resources feads to significant economies. What is the best network structure, as
a function of . # and burstiness” Newell, in tire same paper quoted above !18), points out that there
are no cflicient algorithms for selving large mininization problems when the cost functions are con-
cave. e when there is an economy of scale. Symmetry cannot be used to reduce the complexity of
the problem. because the best solution will not necessarily reflect the symmetry of the traftic require-
ments. We shall not, therefore, try to find the best network. Can any conclusions be drawn by consid-
cring the geometry of our heuristically constructed hierarchical structures? In the previous section we
ignored the geometric constants. but let us now bring them into the treatment of two-level networks.
when a=h=1 and when the trathic is not necessarily bursty.
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Figure 11. Cost of One-Level Regular Networks.
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Figure 12. Improving a Squere Network for Bursty Traffic.

Let Dy obe the cost per unit area of the top level (the station-station level), and let 7, be the
average time cach message spends in the top level. (38) applies directly to the top level. Let L be the
distance between ncarest stations, and let 4 be the arca per station, where 4 = L% By definition. N is
the average line-of-sight terminal-to-terminal distance a message has to travel. When N>> L, N is also
the average station-to-station distance a message has (o travel. Therefore. from (38). the cost per area
of the tap level is given by

D, = NS, + N L (40)

il T,
In order 1o calculate the cost of the bottom fevel, we must find the average terminal-station distance. I
the area assigned to a station was a circle of diameter £, this avcrage distance would have been L/3. in
practical networks with inter-station distance L the average tlerminal-station distance must be larger, and
we shall write it as (L/3. where ¢ is a constant to be determined. The average square root of the

A summary of the numerical cocflicients characterizing the networks built with the three regu-
lar tessalations at the top level is given in Table 1 Also included in the table is the hypothetical, but
impossible. “best” network, which we use for normalizing the cost in our figures.
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l.et ; be the cost per unit arca of the terminal-station tevel, and et 75 be the average timie
cach message spends in this level. Since every message goes through this bottom level twice, oncee al
cach end of its path. and since cach terminal has two half-duplex lines, for sending to and recenving
from the station, respectively, we see that
»=2.S’,,§-[—‘+ ;ZML& : L 40
3 5N? T,
where. as before, M/ N is simply our way of writing the terminal density. For a given L the otal cost
of the two-level network can be obtained from (40) and (41) when minimizing D+ D> by choosing 1
and T» subject to T=T,+T, Let x be the ratio between L and N. that is, x is the iterstation distance
measured in the natural distance unit of our networks. The total cost is then

D, = NS5+ 200/ 0 + | Ldea/tpnr + 3 Levantxn| (42)

Eguation (42) gives the total cost of a two-level two-dimensional networks as a tunction of x. the rato
between the interstation distance and the average distance travelled by @ message. Which a will nunmim
ize D, This best x is casily found numericallv, and Fig. 13 shows the cost of two-fevel systems. m
which the top level was a square. triangular or hexagonad network. The cost of these netwaorks, whete
the best x was chosen for cach as a function of NS, 7. was normalized by the cost of the hypothetical
“best” network defined by Table 1 with its best x as a function of N°S, T

Once again, we see. that the square network is never the best. When the traftic is bursty the
hexagonal network is best, and when the traffic is steady the triangular network takes over. Comparing
Figs. 11 and 13 we see that in the two-level system the triangular network becomes better than the hex-
agonal one at a smaller value of N2S, 7 than in the one-level system. This is because we simplv ignored
the guestion of how messages arrived at the stations in our treatment of onc-level networks. In ow
model for two-level networks we explicitly took into account the terminal-station distance. If we com-
pare our three networks with the same area per node we sce that the triangular network has the smal-
lest average terminal-station distance. and the hexagonal network has the largest average distance. This
distance is irrelcvant when the traflic is bursty, but gradually becomes important as the traftic becomes
steady. and is the reason for the earlier superiority of two-level triangular over hexagona! networks

Figs. 11 and 13 are both drawn for M=1024_ If we consider a d:ferent A the one-level curves
of Fig. 11 will simply be shifted along the N2S,7 axis. while retaining their shape  The shape of the
curves describing the two-level networks is not invariant when M changes. but the general charactens-
tics were checked for M=16_ 256, 1024, 4096 and 16384, and they are the same triangular (wo-level
networks are good for steady taflic, hexagonad networks are good tor bursty traflic. and the squwte net
works are never the best of the three.
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When the traftic is bursty and M is farge. more than two devels will be cven better What wali
be the good geometry? In the previous section. while derving 3600 we saw that when the tralt s
very bursty and when A7 >> 1 the network cost s donunated by the terminal-staton part It imitieds
ately tollows that the best network will be the triangular. which has the saudlest ternunal-station o
age distance when the area per station s given. Combining this conclusion with the previous discussion
of Figs. 11 and 13 we are tempted 10 conjecture that whenever the best number of levels, as a function
of bursuness, is used. the top level should have the triangular geometry. The top level will cither be
steady enough. or else it will be just one of many levels. and the cost of all but the wop fevel will make
our triangutar network fwith its hexagonal tiles) the best. For the same reason 1s natural 1o assuime
that the top level will always reflect the translational and rotational symmetry of the tathe reqgurre
ments, and that we shall never have 1o use networks fike that of Figo 12 10 the wop feved

11. Conclusions

We have assumed that the traffic level and the necessary performance wie speatlied. and tha
the goal is to Tulfill these requirements with the least cost. The quality of @ given organization i~
defined to be the inverse of the cost of a given organization. suitably normalized  Burstiness s defined
and serves as a natural dimensionless number 1o characterize the requirements We also assume that
space is homogeneous and isotropic: terminal density and tratlic requirements are the same everywhere
This often leads to results that depend only on the average distance travelled by messages. and not on
the distribution of distances travelled. The validity of our results in the case of irregularity cither in
spatial distribution or in traffic requirements was not anvestigated.  The cost of  communication
resources was modelled by simple power laws.

When the trafhic is steady. the quality of simple one-level dedicated-channel systems is reason-
ably good. since all channels will be well utilized. When the traffic is bursty, channels are hardly utif-
1zed. and a significant gain can be achieved by sharing, cven if the technology has no inherent
cconomies of scale.

To make sharing of dedicated channels possible, we introduce regudar hicrarchical structures
(For a treatment of hierarchical organization mixing ALOHA and dedicated channel see 1191 Our reg-
ufar structures are obtained by dividing the terminal population into cqual groups. and placing o vconeen-
trator in the center of cach. Repular multi-level hierarchica! structures can improve the performance ol
bursty systems significantly. The optimal structure is characterized by a balance principle, that gives the
ratio of investment in any two consecutive levels.  Another characteristic of the optimal reguln
hierarchical structures is that channels are organized in small groups of equal sizes

In line systems the improvement is obtained by shortening individual lines and from sharing
long high-capacity lines. The performance of regular line structures is therefore strongly dependent on
the dimensionality of the system. 1t is harder to improve two and three-dimensional line systems by
our regular structures since the typical line length decreases more slowly with the number of groups
when the terminals are distributed in more dimensions  The question of the performance of the best
possible line structure is raised but left open. We conjecture that the dependence of the cost of regular
structures on dimensionality will not be significantly improved by any scheme.

The improvement of broadcast systems foflows from spatial reuse: ic.. different groups of ter-
minals can communicate with their concentiators by short range transmissions at the same time,
therehy sharing bandwidth The performance of regular broadeast systems is independent of dimen-
sionality. and very similar to that of the onc-dimensional fine systems. For systems in two or more
dimensions which are very distributed and bursty, dedicated broadeast channels arc therefore better
than line channcls.
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The problem of very bursty distributed nctworks with dedicated channels reduces almost
entirely to the centralized system problem, since the “network’ part at the top level is only one of very
many levels. Tessalating the plane with hexagonal tiles leads to the best network with both technolo-
gies, but for different reasons. Of all regular shapes tessalating the plane, the hexagon has the smallest
average distance to its ‘center’. and this makes it superior for line networks. Tessalating with hexagons
is good for broadcast networks using omnidirectional antennas because it results in the least interaction
between neighboring tiles, and makes the most sharing possible 131,

The best geometry for a network with a given number of levels changes with burstiness. but it
seems that, for line networks. when the best number of levels is used. as a function of burstiness, tes-
salating the plane with hexagonal tiles {and forming a triangular network of communication lines) is
usually the best.

Appendix

To simplify our formulas here let us rewrite (15) and (16) as

P= P, (Al)
B
2ol (A2)
B ol \
where
vom S
¢-l+ain
s = 1/x
! = X(h*“'g

Using [JP=m and YT B =6 we can solve (A1) and (A2) for P, and B, in terms of B.r..,s.x and m.

When a # n we get

p =" "lm"‘l"ll»;r (Ad)
B = ll—x, B (A4)
—X

tgnoring geometric constants, we also know that the following must be true

B.t‘l."S"Pi“)z—iT (AS)

Using (A3) and (A4} in (AS) we can get B as a function of m,r and the constants s and x. Isolating
the dependence on r we get that B is proportional to

U 3
~¢f b+!
(x’—l)'m"’r"ll o (A6)
Differentiating we find that B is minimized, as a function of r. when
m\-s=xr(b+l’/g (A7)

Substituting (A7) in (A6) we get that B is proportional to (x—1) and is therefore proportional to
mt s+l 1 Since the cost is proportional to B! it follows that when the best r is used the sys-
tcm cost is proportional to
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m "] I (AR)

Substituung (A7) in (A3) we also see that when the best ris used the £, do not depend on . and they
must therefore satisfy P.=m'’ While the best number of icvels will depend on g, i.c.. on the quality
of the design procedure applied to each level. (A8) shows thuat the svstem cost. when the best number
of levels is used. is independent of ¢ For larger m we can also approximate (A8) by m' ¢ " and see
that the growth with m of the best regular hierarchical system depends only on the geometric dimen-
sionality and on the length dependence of line cost, and hardly depends on the capacity dependence of
line cost.

When a=n (A3}-(A7} are not valid since x=s=7=1_ But the solution is actually stmpler. In
this case we get from (A1) that for every r. the best r~level system should have Pi=Pr= - =P,=m'".
and from (A2) we get that 8,=8,= - - - =8,=8/r Substituting in (A3) and ignoring the geometric
constants we get
L e h

B/r—t{L"S"m“"

Isolating the r-dependence of B. it is cusy 10 see that the best r must satisty Ch 1) r =g (ntm . und that
the system cost when the best number of levels is used is proportional 1o [imta]”
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Pl = \7/‘)] -+ ?j— - P)= _,ll‘

S5 P,
and the defay s then given by
S 2vm (9)

= ———— ¢

-8y -5

Comparing (91 with (71 we see that we gain @ factor of at least 2 by going from a two-level channel-

splitting scheme o o two-level chanael-sharing scheme Comparing (9) 1o the delay in the one-level
. . m . .

scheme. given by ] = oy we see that the two-leve! channel-sharing scheme is better that the one-

level schemie as long as P is smaller than m.
6. Mixing with a General Random-Access Scheme

The channel-sphitting curve in Fig. S shows the power of the two-level mixed-mode idea ¢ven
m its simplest form. by introducing intermediate repeaters and choosing their number we gain a
significant improsement over both the one-level ALOHA and the one-level FDMA. By choosing the
number of repeaters. we can make sure that the dedicated channels are not underutilized and that we
do not have ALOHA systems that are too heavily loaded.

Retracing our steps so far, we can see 1wo ideas that improve the mixed-mode organization
even more” If top-level transmission can be perfectly captured in the presence of bottom-level transmis-
sion then both fevels should share the channel. and we get the “full interference’ case. If the interac-
tion between levels s mimimal then the performance is even better. and the "no interference” model is
then appropriate.

Figo 6 repeats some of the curves of previous sections and aiso includes the twa level ALOHA
scheme of {4] We see that two-level ALOHA offers little improvement over the two-level mixed-
mode scheme. even though the two-level ALOHA was modelled with the best possible assumptions
regarding the interaction between levels. It can be shown that the three-level ALOHA offers even less
improvement (4] We thus reach the conclusion that iff vou were to design a system for a given ST
where neither one-level ALOHA nor FDMA perform well, you should almost always use a two-leve!
mixed-mode system, and only rarely (i.c., for a small range of ST around 1 ) should you use two-level
ALOHA. Intuitively, a message should (almost) never have to face contention systems twice on its way
o its destination: if contending once is not enough to reach the destination. the rest of the way should
consists of dedicated paths.

The dedicated-channel scheme can be improved by a inulti-level organization that uses dedi-
cated charnels at all levels {3]. Even with the best number or levels, the cost of a multi-level
dedicated-channel scheme grows with the number of terminals. The mixed-mode scheme presented
here already assumes the population of terminals is ‘infinite’. and its cost is independent of the number
of terminals. A hierarchical organization mixing modes is therefore better, when the number of termi-
nals is large. than a hicrarchical organization using dedicated channels only.

Will the analysis presented so far be useful iff we have the option of using Carrier Sense Multi-
ple Access (CSMA) or any other random access that is better than ALOHA?

We shall deseribe a general random aceess scheme by

where U is its maximum utilization. 1 L s greater than /e the randem access scheme will be better
than ALOHA_ and the region (in the Quality versus ST plane) left infeasible will become smaller. But
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organization and made unavailable to the bottom level was left idle. In the channel-sharing system
evennthing that is not actually used by the top level is available to the bottom level. The new bottom
fevel has therefore more capacity. and the delay in it will be smaller. We thus have that the otal dela
in the channel-sharing system is smaller than the delay in the channel-splitting system.

Are the assumptions used in proving theorem | reasonable? The first is simply the assumption
of “transparent bottom™. introduced and justificd carlier. When the two levels are synchronized. the
total capacity available to the bottom level will be reduced exactly by the amount of activity in the top
level. But the assumption that the delay will simply depend on this reduced capacity ignores the details
of the occurrences following u transmission failure (for example, the retransmission policy and its
influence on delay). The second assumption is thus more a device to approximate and simphify the
behavior of real systems than a direct description of them. [t is @ natural extension of another device
we have used consistently: the assumption that the total offered traftic in an ALOHA system is a Pois-
SOn Process.

The simple model of the influence of the top level on the botiom level, which is assumed in
theorem 1, has been used systematically in earlier sections of this paper. As a different examole of the
benefit of sharing. let us see the improvement possible when dedicated broadcast channels are used.

Assume we have m terminals and form a two-level system by splitting them into Py groups with
P, terminals cach. If dedicated channels are used at both levels and there is no interference between
lower-level groups we have
P, P,

I = - -
( | S ( A .S/P[
If the total communication capacity we have s €. the task of designing the best system can be formu-
lated thus' Minimize T when Sas given by choosing Pyoand P, subject to PPy = m. and by choosing O
and (',  subject to o+ C = O The  construined  minimum v achicved  when
Cr=1C+85)1/2, Ca=tC =512 and
/) I C
*l = ] + “S

|
P, vm C-S

and the resulting minimum 7 for a two-level dedicated channel scheme is given by

48 m
= + (7)
(C=-%) C-5

What will be the system performance if the channel is shared between levels? To analyze this case we
shall assume that the bottom level is transparent and can detect its failures immediately The lower
level uses the empty slots left by the upper level in g round-robin fashion. The total delay for a system
of P, groups of P, terminals cach will modelled by

P, P,

= o+ S
r -5 (-5 S/P,

(§)
The first term is the delay in the top level, consisting of P, dedicated subchannels. The second term is
the delay in cach one of the bottom-level subsvstems, cach of which is carrying a trathe of S/P, over

P, dedicated subchanncels. ¢ Sis the capacity available to every one of the bottlom-level systems

The T of (8) will be minimal when
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If a transmission from a terminal ¢can be heard by more than one repeater, the system perfor-
mance may be improved by allowing any of the repeaters. which received this transmission correctly. to
relay it 1o the station [10). In that case the message will not have to be correctly received specifically
by irs repeater. and success in reaching any of the repeaters will be enough. This advantage should be
traded against the possibility that a message will successfully reach more than one repeater. and that all
these repeaters will send it on. We shall not analvze this ided in any more detasl,

5. Sharing or Splitting?

In the previous sections we have introduced several models for o two-fevel system i which
both levels share the communication channe!  But is this sharing good? In order 6 answer this ques-
tion, consider another alternative:

If we have a communication medium with capacity C. fet us assign a portion g8C to the
terminal-repeater traffic and a portion (1-8)C to the repeater-station traftic. Using R repeaters, und
assuming no interaction among ALOHA subsystems, we get the following cquation for T

R + ]
BC S (1=-BYC —eS/R

T =

We can now mintmize 7 by choosing both R and 8. The minimum 7 will be obtained when the
following two cquations are satisfied:
R = s
BC -8

BC-S o veS

((l*ﬁ) \'(;.S' +\/'B(:”—s
These equations can be solved numerically. and Fig. 5 gives the guadity of this optimal two-level
channel-splitting organization compared with ALOHA. FDMA with 1024 termunals. Also included are
the channel sharing scheme. in the cases of no interference and full interference. We see that sharing
the channel is significantly better than splitting it

Sharing is superior to splitting in very general circumstances, as the following theorem shows:

Theorem 1: Consider a two-level terminal-station communication system using a broadcast channel.
This channel can either be split between levels or shared by both. Assume the channcel-sharing mode
has the following two properties:

(1) Top-level communication is not bothered at all by bottom-level communication. t.e.. the bot-
tom level is transparent

(2) The only effect activity in the op level has on the bottom level is to subtract itself from the
capacity available to the bottom level
Then the channel sharing mode is superior o the channel splitting mode.

Proof:  Let us slart with a channel-splitting system carnving a given traffic and modify it o get a
chunnel-sharing system that will carry the same traftic with a smaller deky - When the new top level is
active it uses all the available bandwidth  Bis transmission tume will theretore be shorter than the
trapsnussion time in the chanael-splitting ssstem By appropriate scahing and adjustment of the
transmission policy in the top level we can ensure it will have an equal or shorter waiting time, and that
it will utilize the same fraction of the total communication resource as did the old top level. The delay
in the new top level will therefore be smaller than the delay in the old top level. Since the old top level
must have been less than fully utilized. some of the capacity assigned to it in the channel-splitting
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Let us stress once again that we do not explicitly treat the question of transmission crrors
Instead of discussing the probability of successful reception and its dependence on various parameters
we use the following simple model: A transmission is always received correctly if its source s within
range of the destination and if there is no interference at the destination. Interference is caused by any
other transmission within range of the destination. The range dependence of a successtul recepuion is
modelled as a step-tunction. When there is no interference, a transmission will always be successtul 1f
the distance to the destination is less than the range. and will never be successful if the distunce s
more than the range.

Let A4, be the area covered by the any group of terminals. intended to be heard by once
repeater. Lot 4, be the arca covered by those terminals which are actually heard by the repeater  In
any safe design we must have 4,> 4. Let r be the ratio 4/ 4. r will obviously depend on the shape
of the cells around the repeater and on the terminal’s power. What is the effect of the number of
repeaters on 7 A simple geometric argument leads to the following conclusion: If we change the
number of repeaters and the size of their cells, hold fixed the shape of the cells and adjust the
terminal’s power to get the same power at the repeater in the worst case (which is when the terminal is
as far as 1t can be from the nearest repeater) then r will stay the same.

For example. take the case of a plane divided into identical regular hexagons. Let us give eveny
terminal exacthy the power necessary. on the average. to reach the center of a hexagon from its ver-
tices. without any margin of safety. In this case r will be the ratio between the area of a circle and the
arca of an inscribed regular hexagon, ie.. r=1.209 . If we wish to guarantee that cach terminal can
reach more than one repeater the transmission range must be cqual to the (worst casel) inter-repeater
distance. In this case » will be cqual 10 3.627 .

I-or a given shape of cell and power adjustment policy. we have therefore a set of interacting
ALOHA systems, where the amount of interaction does not depend on the number of repeaters. A
simple argument, like that used to find the maximum utilization of slotted ALOHA system [9]. leads 10
the following: The maximum utilization of each ALOHA system consisting of a repeater and its termi-
nals will be degraded by the interference of its neighbors, and is equal to 1/ re.

Modifving (4) we get for our present two-ievel system

!l = (6)

The optimal R 15 now given by

R \ l orS + verSUC .S')'

aptimal = E
and T with this optimal R s

- | P ?

I = ('-_Sl\ erS/LC-S) + Il
Fig. 4 shows the guality of the “full interference” case when interaction among ditfferent ALOHA sys-

tems exists. . the coefficient of interaction., takes there the values 1.2.4 and 8.

In general, with more interaction, we shatl be able to achieve a lesser portion of the infeasible
region, and more repeaters will be needed. But having neglected the cost of repeaters, we should cer-
tainly not allow their number to grow without limit.  Another problem with large R is that we have
assumed that the terminal popubation s anlinite But when R becomes comparable o our actual
number of terniabs, the one-tevel FDIMA will, of course, be bet! r than this two-lesel orgamzation
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Even if the geometry alone is not enough to justify the assumption of transparent bottom. there
are other good reasons to consider it valid. Since we expect to have few repeaters, they may be expen-
sive and sophisticated. We shall assume now that repeaters are powerful and sophisticated enough to
be perfectly captured by the station in the presence of bottom-level transmissions. The top level will
never ‘see’ the bottom level. and this is the reason for the name ‘transparent bottom’.

The assumption of perfect capture answers some of the problems raised at the beginning of the
section. To model the effect of the other problems, we shall modify the ‘no interference’ assumption
and assume that a repeater cannot listen to its terminal whenever any of the repeaters is transmitting 10
the station. Calling this new assumption ‘full interference’ [8], we shall use it as a worst case estimate
for the interference between repeaters and terminals. With the full interference assumption, the
effective capacity available 10 each terminal group is ('-35, and instead of (1) we have for T the follow-
ing expression:

R 1

+
=S T (=5 —eS/R 4

T =

The optimal R is given by

eS +vVeStC--S)
R optimat = BT

and T with this optimal R is given by

|

-5
Fig. 3 shows the quality of the two-level hierarchy under the “full interference’ assumption. A
significant part of the ‘infeasible’ region is sull filled, but many more re; zaters are necessary in order to
achieve this. From (5) we see that as S—(. R—oc. The quality in Fig. 3 is given for optimal R, and
for R fixed at 2, 4, 6, 8. 16 and 32. For comparison Fig. 3 also includes ALOHA, FDMA with 1024
terminals, and the two-level "no interference’ case of the previous section with optimal R In both
curves with optimal R only the portion with R > 1 is drawn. They start at the same noint because when
R=1 the *no interference’ and the “full interference” assumptions are identical

. 2
T= VeS/HC—S) +1

4. Interacting ALOHA Subsystems

Spatial reuse is another strong assumption made in section 2. each 1¢p > rer will be heaid by ‘its’
receiver and by no other receiver. Is this a reasonable requirement? We 1o no. v, astalling a few
sophisticated repeaters but the many terminals should be cheap and simple  These terminals may be
mobile or unattended and they will not necessarily know where they are or where their repeater may be
Even if each terminal had a directional antenna or an adjustable output power, it might not have the
information necessary to control them. Let us assume that all terminals have the same power and an
omnidirectional antenna.

Consider a division of the plane into a set of equal polygons In the ‘muddle” of cach we place o
repeater. Assume the terminals are uniformly placed over the plane We wish to guarantee that ¢ ter
minal will be heard by its nearest repeater. If the only factor that determines reception 15 power at the
receiver, we must give each terminal enough power for the worst case (when its distance to the nearest
repeater is maximal). We shall assume that whenever two terminals have cnough power to be heard by
the same repeater, the resulting interference will destroy bath messages. that s, there s no capture ol
the terminals’ transmissions. Because every terminal is given enough power for the worst case range.
some terminals will be heard by more than one repeater. The assumption of no interachion between
terminal groups must, therefore, be modified.
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use for delay in ALOHA svsiems

When both levels are thus slotted and synchronized. the effective capacity available o cach ter-
minal group will be equal to C-S/R. since S/R of the available capacity is used by its upper level
repeater. The load on each lower level ALOHA system accessing a given repeater will be S/R - The
average time T a message will spend in the system is thereforc

.R + ! Y
C-S (C-S/R)-¢S/R
where the first term is the time spent in the top level (repeater-station) and the second is the time
spent in the bottom level (terminal-repeater).

T = ()

With (1) giving the total time in system, we can now ask what is the optimal number of
repeaters. Minimizing 7 we get

R aprima = %l( I+e)S + v (i+e)S(C-S )] (2)
With this optimal R we get for T
T = (l[n +V(T+eTS7(CS) G

From (2) we can see that when S is very small, the optimal R is almost zero. This occurs because the
two-level structure is worse than the one-level ALOHA when S—0. The optimized R will try to com-
pensate for this by driving to zero the time spent in the top level. We can also get from (2) that the
largest optimal R is 3.95. obtained when S/C'=.944. In practice, R must be an integer greater than one.

Equation (3) gives T as a function of S and C. The quality can be calculated by comparing €
with the capacity necessary in an M/M/1 scheme for the same Sand 7. Thatis. Q= (S+1/TV/C Fig
2 gives the quality of the two-level structure with the optimal R (which is not nccessarily an integer)
The section of the curve in which the optimal R is smaller than | is not drawn. Also plotted 18 the
quality of the two-level structure, when T is given by (1), and when R is fixed at 2. 3. and 4 For com-
parison. the figure also gives the quality of ALOHA and the quality of FDMA with m=1024 terminuls

We see that a two-level system can fill in a large portion of the ‘chasm’ left between ALOHA
and FDMA. This chasm is an ‘infeasible’ region when only ALOHA and FIDMA are considered  When
the number of terminals grows, FDMA will move even further to the right, but ALOHA and our two-
level scheme will not be moditied (both of these already assume an infinite population of tcrminals) . so
the relative gain achicved by the two-level hicrarchy over both ALOHA and FDMA will be cven
greater.

This seems almost 100 good to be true! In the following scections we shall reexamune our
assumptions and see how relaxing them will modify and degrade the result.

3. The *Full Interference' Case

Some strong assumptions were made in the last section to the effect that both terminals and
repeaters can use the same broadcast channel, with minimal interference. Consider first the assump-
tions of ‘transparent bottom™ and ‘no interference’. These assumptions arc reasonable if all the termi-
nals arc far from the station. for example if they arc spread around a ring with the station in the mid-
dle. But if there are terminals close 1o the station, more interference may occur. Transmissions from
terminal situated near the station 1o its repeater may interfere with repeater-station communication, and
transmissions from one repeater to the station may interfere with transmissions from terminals to
another repeater.

68




A
AN

.

— e — e e e

R REPEATERS USING
DEDICATED CHANNELS
. TO COMMUNICATE
WITH STATION
o O o O o

o ¢ & O

S . S—— N m— N A s

AN ‘INFINITE' POPULATION OF TERMINALS, DIVIDED INTO R GROUPS.
EACH GROUP USES ALOHA TO COMMUNICATE WITH ITS REPEATER,

Figure 1. Two-Level Mixed-Mode Broadcast Systems.

(2) spatial reuse: The terminal-repeater communication will be done using the ALOHA scheme.
Each of the R groups can use the entire bandwidth to communicate with ‘its’ repeater and there
will be no interference between transmissions of the terminals in different groups. That is, the
terminals in cach group will be heard by cxactly one and the same repeater.

(3) transparent bottom.: Bottom-level transmissions have no influence on top-level transmissions.
Each repeater will use a dedicated subchannel whose capacity is equal to 1/R of the romal avail-
able capacity for its communication with the station.

(4) A repeater cannot listen to its terminals while it is transmitting to the station.

(5) no interference: A repeater’s capacity to listen to its termunals will not be bothered by any of the
other repeaters transmitting to the station {8,

The throughput-delay performance of the ALOHA schemes 1s not described by a simple ana-
Iytic expression (2], For simplicity we mode! the delay 7 in an “infinite” population ALOHA system
carrying a traffic S on a channel whose bandwidth is C by 7 = IR L»Sf, This is a simple two-parameter
o
approximation, that reproduces the known behavior of (unslotted! ALOHA when S=0, and the know
behavior of (slotted) ALOHA when S/C=1/¢. For a similar three-parameter approximation see (5]

In our two-level scheme. i a terminal is teying to transmit to its repeater wh rencater is
transmitting to the station. the terminal will not be successful. and will have to try age @+ 0 Nimize
the wasteful effect of these bottom-level faitures the two levels should be slotted ar d.
This means that dedicating subchannels 10 the top level must be done by Time D. winje
Access (TDMA). Despite the fact that TDMA must be used. we shall describe the delo ap

level by the FDMA formula. which is both simpler and mo-c similar to the M/M/1 type toiuia we
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favorable conditions. In sections 3 and 4 we relax the assumptions on the interaction between levels
and on the interaction between lower-level ALOHA groups respectively. Section 5 shows that sharing
the channel by both levels is often better than splitting it. Mixing dedicated channels and any random
access scheme is discussed in section 6, and section 7 shows that having more than two levels leads to
only a small improvement.

In the second haif we discuss systems in which distributed terminals are both the sources and
destinations of all messages. We shall call such systeinis networks, and assume that the average distance
travelled by messages is much larger than the distance between a terminal and its nearest neighbors.
Section 8 introduces two-level mixed-mode networks with the simplest possible routing. Section 9
shows that improving the random access level leads to a relatively small overall improvement, and sec-
tion 10 similarly shows that introducing more than one dedicated level leads to a small improvement.

Throughout the paper we assume that the communication resource available is a broadcast
channel of capacity C. We shall also assume that the message arrival process is Poisson with a total rate
S, that message lengths have an exponential distribution; and that all terminals contribute equally to the
overall traffic. This last assumption characterizes the case which is hardest to control efficiently. We
choose the data unit so that the average length of a message is equal to 1. This is simply a convenient
normalization, which is equivalent to measuring communication capacity in messages (of an average
length) per second, instead of measuring in bits per second.

If the terminais were co-located in the same place, the best access scheme would be to form 4
queue of busy terminals (i.e., those having anything to transmit} and to let them use the full bandwidth
available one after the other. Forming one queue is much better than giving each terminal a fraction of
the bandwidth, and letting each terminal queue its own messages [6]. When terminals are distributed
and cannot form one queue without some investment in coordination and control more bandwidth will
be necessary. Assuming that S and T are given, we define the quality {7] of an arbitrary access scheme
as the inverse ratio between the capacity necessary when using this scheme and the capacity necessary
when using the best possible scheme, in which messages form one queue and share one channel. When
messages arrive independently and their lengths are exponentially distributed, this best scheme is the
M/M/1 queue, in which we have Cy; =S+ /T

2. The ‘No Interference’ Case

Given our broadcast channel, let us build a two-ievel hierarchical system by dividing the large
number of terminals into R equal groups. and by giving each group a repeater. Each message will go
from its terminal to its repeater, and from the repeater to the station. The terminal-repeater (bottom)
leve!l will have a large terminal population, possibly bursty, while the number of repeaters will, hope-
fully, be small, with enough traffic going through each for the repeater-station (top) level to be steady.
It is natural, therefore, to suggest using ALOHA for the terminal-repeater level. and using dedicated
channels for the repeater-station level.

Using ALOHA for the bottom level is desirable for other reasons too. For example, because
no explicit control is exercised over transmission, ALOI{A is especially 300d for mobile terminals and
for situations where the number of potentially active terminals is much greater than the actual number
active at any moment.

In order 10 model this two-level mixed mode centralized system, shown in Fig. 1. we shall start
with the following assumptions (the words in italics will scrve as names for the assumptions):

(1) channel sharing: The communication medium is a broadcast channel, and both levels (terminal-
repeater and repeater-station) may use the full bandwidth.
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On the Advantage of Mixing ALOHA and Dedicated Channels

Abstract

When many terminals which are distributed in space must share communication resources, we
face the following problem: What scheme can control the access to the communication resources
in an effective way? We shall assume that S, the traffic to be carried, and 7. the acceptable
average delay. are specified, and that the goal is to design the least cost system satisfying these
specifications.

Dedicating a fraction of the resources to some source-destination pairs is one very simple access
scheme. Another simple scheme is ALOHA = When we combine the specified traffic and delay
into the dimensionless quantity ST, whose inverse we call burstiness, we find the following: Dedi-
cating separate channels is good when the traffic is steady. but bad when the traffic is bursty.
ALOHA is good when the traffic is bursty, but bad when the traffic is steady. Neither ALOHA
nor dedicated channels are good when the traffic is of medium burstiness.

Mixed-mode systems. using ALOHA in a bottom level and dedicated channels in a top level, can
be good. since they can trade the amount of interference in the random access level against the
number of dedicated channels in the top level. By choosing the right mix, such networks can
become insensitive to the limitations of both access schemes.

1. Introduction

When many terminals which are distributed in space must share communication resources, we
face the following probiem: What scheme can control the access to the communication resources in an
effective way? We shall assume that S, the traffic to be carried, and 7, the acceptable average delay,
are specified, and that the goal is to design the least cost system satisfying these specifications. Further-
more, we shall assume that only the capacity. i.e., bandwidth, necessary has a cost, and that equipment
and transmission power are free.

Dedicating a portion of the resource to source-destination pairs is one very simple access
scheme. Another simple scheme is ALOHA [1.2]. When we combine the specified traffic and delay
into the dimensionless quantity ST, we find the following: The dedicated-channel scheme is good when
ST>>1 (the traffic is then said to be sready) but bad when ST << 1 (the traffic is then said to be
bursty). ALOHA is good when the traffic is bursty, but bad when the traffic is steady. Neither ALOHA
nor dedicated channels are good when the traffic is of medium burstiness.

It is possibie to improve the dedicated channel scheme when the traffic is bursty by a hierarchi-
cal structure that makes sharing of few high capacity channels possible [3]. 1t is also possible to
improve the ALOHA scheme when the traffic is steady by trading off transmission range and the neces-
sary number of hops [4]). Is it possible to obtain a good access scheme for medium burstiness by mix-
ing the dedicated-channels and the ALOHA schemes? Kleinrock (5] has shown that splitting the
resources and the traffic between two access schemes can never lead to an improvement. Here we show
that by building a hierarchical system with different schemes used at different levels we can get a
significant improvement at medium burstiness. The first half of this paper applies this idea to systems
in which the sources of messages are many terminals distributed in space, but in which all messages are
destined to one common station. We shall call such systems centralized, and assume that m, the number
of terminals, is very large. In section 2 we introduce the mixed-mode scheme under the most
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there still will be a region that is infeasible if we consider only FDMA and the given random access
scheme, and the two-level mixed-mode scheme can help filt this infeasible region.

Let us divide the gap between 367 (the maximum utilization of ALOHA) and 1 (the max-
imum utilization of M/M/1} into four equal parts, and consider general random access schemes where
U (the maximum utilization) is equal to .526, 684 and 842. Figures 7. 8 and 9 show the quality of the
onc-level and the two-level schemes. with this set of values for U, The mixed-mode curves were
obtained from the formulas of this chapter by substituting 1/U for ¢. The two-level random access
curve was obtained as follows:

Let us assume that the total offered traffic G and the throughput § are related, in a general ran-
dom access scheme with m terminals, by
m- |

(10)

S
-

Gl a6
-

The maximum utilization {i.c.. the maximum S/C) of this system will be obtained when aG/C=1, and

is equal to

l m-1

1— —
m

(i

1
a

Eguation (11) has its maximal value when m=2, and the best two-level system will therefore, once
again, have two repeaters. Since we have denoted the maximum utilization of an ‘infinite population’
system by ' we must have @ = I/ Ue . In analogy to (4.4) we can, therefore, model the delay in a
two-level mixed-mode system by
- 1 + 1

C-2aS (C-G/2)~S8/2U
The first term is the delay in the repeater-station level, which has a maximum utilization of 1/2a, as
abtained from (11). The sccond term is the delay in each one of the terminal-repeater subsystems,
where G is given in terms of S and C by (10) with m=2 . ( This very simple model for a two-level
random-access system should not be applied when U>2/e=.736 . because the calculated maximum
utilization of a two-terminal system will then be greater than one!)

T

From Figures 7 , 8 and 9 we see that the conclusion formulated earlier for ALOHA systems
actually applies to random access systems in general: two-level mixed-mode systems fill a significant
part of the infeasible region. While our model for a system with two levels of random access may be
considered too crude. it seems to say that two levels of random access do not offer a significant
improvement. and are almost dominated by the two-level mixed-node systems.

7. Are Three Levels Ever Necessary?

if two-level mixed-mode systems are good, would three-level systems be better? Consider, for
example, a system consisting of one ALOHA level as the bottom level. and two dedicated levels on
tops.

Despite the fact that every message takes two hops in the dedicated levels we shall assume that
only one hop, the longer one. influences other repeaters, and for this influence adopt the *full interfer-
ence’ assumption. 1 the two dedicated levels do not share bandwidth, but the bottom level shares with
both of them, we can write for the delay in this three-level system
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4S—+ 4‘/72 + — ! — (12
-8 (-8 C-85-~erS/R
Phe first two terms are the delay in the dedicated levels when we have R repeaters, obtained from (7))
The third term is the delay in the ALOHA level, and 7 is the interaction ratio.

If we assume that the dedicated levels share the channel we can use for them (9), and the delay
in this three-level organization is
S L WR ., | (13)
-5 C-35 (C-S)-erS/R
tor a given (' and $ we can. in both (12} and (13). scarch for R, the number of repeaters. that will
minimize T.

Fig. 10 shows the guality of the two-level and the three-level mixed-mode schemes. when there
is no anteraction between ALOHA subgroups (ie., r=1) and the optimal number of repeaters was
chosen in cach as a function of burstiness. The threc-level scheme was drawn only when it is better
than the two-level scheme. Having three levels results in no noticeable improvement if the two dedi-
cated fevels split the channel and results in a small improvement if the two dedicated levels share the
channel. The reason for this small improvement is clear: going from one dedicated level to two dedi-
cated [evels leads to a significant improvement only when the traffic is bursty and the number of
repeaters is farge. But in our two-level mixed-mode scheme the number of repeaters is large only when
the traffic is steady, so adding a second dedicated {evel cannot lead to any dramatic improvement.

When we have interaction between the ALOHA groups, the number of repeaters becomes large
carlier. i.¢.. when the traffic is bursty enough to make two dedicated levels better than one. Figures 11,
12 and 13 show the guality of the three-level mixed-mode scheme when the interaction ratio r is equal
to 2.4 and 8. The three-level scheme in which the channel is split between the two dedicated levels
was actually plotied in all three figures . but becomes noticesble only when r 24,

We see that introducing three levels improves the two-level perforinance significantly only
when the interaction between ALOHA groups is very large. Even then. the gain achieved in going
from two to three leveis is much less than the gain achieved in going from one to two levels. When
the interaction between ALOHA groups is strong, it may be unreasonable to ignore the interaction
between repeater groups in the middle levei. However, such an interaction- free division into groups
was assumed in deriving (7) and (9), which form the basis for (12) and (13). Hence our three-level
results are likely to be too optimistic. In reality, a three-level mixed-mode scheme will achieve an even
smaller improvement over the corresponding two-level mixed-mode scheme than our figures show.

8. Two-Level Mixed-Mode Networks

In networks, i.c.. when both sources and destinations are distributed, we have a situation simi-
lar to the one we saw carlier for centralized systems: it is easy 1o organize and to control Gf any control
18 necessary) communication systems that are either very steady or very bt . even if they are distri-
buted. It is the distributed systems of medium burstiness that pose a proL. m. We saw earlier that a
hierarchical two-level centralized system which mixes dedicated channels and ALOHA in the appropri-
ale “amounts’ can be much better than either of them. for medium burstiness. Therefore. let us now
apply the mixed-mode idea to networks. We shall discuss in detail only one-dimensional networks. but
expect our major conclusions to be valid for two-dimensional netwarks too. Denote by N the average
distance travelled by messages. and by S, the rate of traffic originating in a4 unit length of the network.
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Let us create a mixed-mode network to serve a one-dimensional system by the following pro-
cedurc. Place stations at fixed intervals equal 10 L. Let every message go from its originating terminal
to the nearest station, then over the ‘station-network’ to the station nearest its destination, and finally
from that station to the destination itself. The connections between stations will be specified later.
Dedicated broadcast channels will be used for station-station communication, and ALOHA will be used
for terminal-station communication. When analyzing the mixed-mode network we shall assume that
the number of terminals per station is very large, this being the worst case for random access. But
when comparing with dedicated-channel networks we shall assume a set of equally spaced terminals. A
occupying any section of the network with length N

What distance is travelled by messages on the station-station level? Consider a message that
has to travel a distance X from source terminal to destination terminal. The distance it will travel on
the station-station (top) level depends on the location of its source terminal within the station area. but
when averaging over all possible starting locations we get:

Lemma: The average station-station distance travelled by messages whose terminal-terminal distance is
X, and whose starting point is uniformly distributed, is also equal to X.

Proof: X can be written as X = nL+Y, where n is a positive integer, L is the inter-station distance, and
0<Y<L Let us parameterize all possible starting positions within a given station by 1 where
—L/2 <t < L/2. The distance travelled by a message on the station-station level is kL. where A is
the integer nearest to (X+r)/L. It follows that

n if -L/2<i1<Y~L/2
k=ln+t irL2-v<i<L)2

The average distance travelled on the station-station level is therefore
n(L=Y)+n+D Y =nL+Y =X

<o
[

It follows that the average station-station distance travelled by all messages is equal to A, the average
distance between source terminal and destination terminal. This lemma does not hold for two-
dimensional networks, but whenever N>> L we have that N is a good approximation to the average
station-station distance travelled.

Let us assume that messages originating at one station will be heard at its nearest neighbors
only, (one on each side.) What is the bandwidth necessary for such a one-level dedicated-channel net-
work? What is a good policy for creating and allocating dedicated channels? Once we define our chan-
nels, by defining traffic streams that can be transmitted independently, the overall bandwidth necessary
will depend on the capacity each channel needs and on the number of colors necessary to paint the
channel so that no two of the same color interfere at their destinations.

We shall assume that every station has an omnidirectional antenna, i.¢., that everv transmission
propagates in both directions. Two transmission policies are then possible: If all transn  ons coming
out of a given terminal are queued together and transmiticd without regard o the dir.ction of their
destination, we need at least three colors to ensure that a terminal does not interfere with transmissions
destined to itself or 1o its two neighbors. Three are obviously enough, because they can be assigned to
terminals in a cyclic fashion. If we want transmission from a given terminal to each of its two neigh-
bors to be done independently and at the same time., we must give each terminal two channels. Four
colors are then necessary and sufficient to enable each terminal to separately send in two ' -ctions and
to separately reccive from two directions.
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Let 7 be the average detay sullered i the op Giation-station) fevel by all messages, and let -
be the ratio between Loand N 1/z s the average number of hops taken by & message in the top level.
I al} traffic coming out of a terminal share one channel, even though cach message is destined only to
onc of the neighbors, the traffic on cach channel is NS, and since three colors are necessary. we get
for this case that the necessary capacity for the station-station level is

. . 13
Cy =3NS, + == t14)
71 z
If we give each terminal a separate channel for cach direction. then the traflic on each channel is
NS,/ 2. and since four colors are necessary in this case we get
. i 1 4
Cy=2NS,+ —— (15}
T| z
Comparing (14) and (13), we see that it is better to have one channel per terminal when the traffic is
bursty (NS, T<<1/:2) and it is better to have two channels per terminal when the traftic is steady
(NS, T>>1/2). Equations (14) and (15) will also describe one-level dedicated-channels networks if M
is substituted for 1/z. where M is the number of terminals in a portion of the network whose length is
N

Returning now 1o our two-level networks, we must calculate the bandwidth necessary for the
bottom part. Let us first assume that all transmissions in the bottom level have a range exactly equal to
L/2. The total traftic carried by cach terminal-station system is then 2LS, = 22NS, . Despite the fact
that half of this total traffic is coming from one source - the station - we shall, at first. model the bot-
tom level by a simple ALOHA system. With our assumption on transmission range there will be no
interaction between ncighboring ALOHA systems, and we can write for C,, the capacity necessary in
the bottom level,

Cy= ¢2:NS, + TL (16)

where 75 is the average delay for getting through a terminal-station system once.
Let us assume that separate capacities will be assigned to the terminal-station and to the
station-station subsystems, without sharing. The necessary total capacity can then be obtained by

minimizing C,+C, subject to T\+27T, = T. where 2 multiplies T, because every message goes through
two terminal-station systems, once at cach end of its path.

Combining (14) and (16), for example. we get
C =3NS, +¢2:NS, + —I—T[U/:) + :""I2 amn
Combining (13} and (16) will similarly lead 10
¢ = 2NS,,+¢'2:NS“+—|7:I(4/:)' +2 ‘2 (18)

The cost of the mixed-mode network can be minimized by choosing the best interstation spacing as a
function of burstiness. When the traffic is bursty the best z is large, and it becomes smaller when the
traffic becomes steadier.

Fig. 14 shows the quality of various onc-dimensional networks. The quality of the one-
dimensional ALOHA network is (2NS, T+ 1)/(2eNS, T+ 1). The curve labelled ‘one-level dedicated’
shows the quality of the one-level organization suitable to bursty traffic (derived from (14) ) when the
traffic is bursty. and the one-level organization suitable to steady trathic (derived from (15) ) when the
traffic is steady. The two curves labelled mixed-mode bursty and mixed-mode steadv were obtained.
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from (17) and (18), respectively. The - that minimizes the necessary capacity was chosen for each as a
function of NS, T.

1t 1 interesting 1o note that whenever the mixed-mode schemes are better than ALOHA . the
steady scheme, obtained from (18) is better than the bursty one, obtained from (17). That is, the top
Jevel will be steady and should be organized accordingly.

In writing (18), we assumed that even it a message has only a small distance o go it will go to
the nearest station and from that station to its destination. But the destination may be within its range.
and it may be able 1o receive the transmission meant for the station directly. 1f such short-range
transnussions are received directly at the end of their Airst hop without retransmission by a station, the
system performance will be improved. Both the average number of hops necessary for messages and
the amount of contending tratfic in the bottom level will decrease.

It is evident a priori that this improvement will be important only when the traffic is bursty and
the best interstation spacing is large. We have calculated it explicitly when the distribution of distances
to be travelled by messages is exponential. Fig. 15 shows that this improvement to the mixed-niode
network becomes noticeable only when the traflic is bursty enough 1o make the ALOHA network better
than the mixed-mode network! in other words, this improvement is irrelevant.

An alternative organization for mixed-mode networks can be based on the go-forward routing
policy: The first hop of cach message will be o the nearest station towards its destination. The message
will then use the top level to get to the last station before its destination, and then again use the bottom
fevel to reach its destination.

It all transmissions have the same range 1t must be at least L in this network,. and we shall
assume it is exactly L. Therefore we shall have more contending traffic in the bottom level of a go-
forward network than before However, there will be less tratlic using the top level, and fewer hops
will be necessary there. This alternative organization will be worse than the carlier one when the traffic
15 steady, and will be better when the traftic is bursty. When the traffic is steady. the interstation dis-
tance will be small. and the gain in the top level will be small. but doubling the contention in the bot-
tom level is very costly. When the traffic is bursty, contention is not a serious problem and the intersta-
tion distance is large. so the gain possible in the top level will be significant.

tig. 15 shows thie go-forward mixed-mode network ( shown only when it is better than the ear-
lier scheme). and we see that it is better only when both are worse than the ALOHA network. Organ-
izing mixed-mode actworks on the go-forward principle 1s neve: a good idea. We sece here once again
that when a mixed-mode network is better than ALOHA and its interstation spacing is properly chosen.
1S top level is “steady”

In the rest of this chapter when we talk about mixed-mode networks with one dedicated level
we shall alwayvs refer o the mixed-mode scheme deseribed by (18). when the best - is chosen as a
function of burstiness in order to minimize the necessary capacity.

9. Improving the Random Access Part
Until now we have modelled the terminal-station level by a set of ALOHA systems. But since
half the traftic in each ALOHA svstem is concentrated in the station it can be coordinated better than in

ALOHA. What will a better terminal-station level contribute to the overall performance of the net-
work?
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Figure 15. Alternative Mixed-Mode Networks (Direct Reception Possible, Go-Forward).
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Let U be the maximum utilization of each terminal-station system. We shall mode! the
mixed-mode network obtained with a general terminai-station access scheme by an equation similar to
(18), where }/ U is substituted for e. We have divided the interval between 1/e and | into threc equal
parts, and show in Fig. 16 the quality of a mixed-mode network where U, the maximum utilization of
each terminal-station system, is .367 (ALOHA), .579, .798 and | (M/M/1).

A mixed-mode network built with a better terminal-station access mode will obviously be
better, but the improvement is not dramatic. Fig. 17 shows the ratio between the quality of a mixed-
mode network with a given U and the quality of the mixed-mode network built with ALOHA as the
terminal-station access mode. The curves do not go all the way to the left since they were not drawn
when the mixed-mode network becomes worse than the one-level ALOHA network.

When comparing the quality of two mixed-mode networks it should be noted that the best
interstation distance as a function of burstiness was chosen separately for cach. This gives the mixed-
mode networks an internal adjusting mechanism, and explains why improving the utilization of the
terminal-station part never leads to a comparable overal) improvement in the necessary capacity. When
using ALOHA for the terminal-station level. we never push it to its maximum utilization. and therefore
can never, gain a factor of ¢ iff we assume an M/M/1 terminal-station part. We have a similar conclu-
sion in [4] when discussing pure ALOHA networks.

Can having more than two levels improve the mixed-mode networks? By how much? We saw
in (4] that a pure ALOHA network with two levels is never better than a one-level ALOHA network.
But the argument used there does not apply to mixed-mode networks. A mixed-mode network with
one dedicated level (the station-station level) and two ALOHA levels in the terminal-station part can
lead to an improvement, but not to a large one. The maximum utilization of two-level ALOHA is
465 [4). But even if we had a one-hop terminal-station scheme with this maximum utilization it fol-
lows from (18) that it would improve the mixed-mode network by at most 7%. Achieving this utiliza-
tion by two hops will, of course, lead to an even smaller improvement.

10. More than One Dedicated Level?

More than one level in the terminal-station random access part does not lead to a significant
improvement. What can we gain by having more than one level in the station-station dedicated part?
What can we gain by having the optimal number of levels in the station-station dedicated part? The
following is a lower bound [7] on the capacity necessary for the station-station dedicated part when the
traffic is steady and when the optimal number of levels is used:

C) = 2NS, + 71‘ (e/2)intd/))? (19)
|

This lower bound is obtained by using regular hierarchical structures [3] 1o reduce the dependence of
the second term of (15) on 1/z while ignoring the fact that when traffic is not bursty regular structures
would increase the first term of (15). Combining (19) and (16) we get that the total capacity required
for this mixed-mode network is

2
C - 2Nsu(1+e.«>+l7_ (e/2)in(4/z) + 2172 (20)

Fig. 18 shows the quality of a mixed-more network with the optimal number of dedicated ievels and
with one dedicated level, as obtained from (20) and (18) respectively. by choosing the best z for each.
Even though we use an upper bound on the performance of a dedicated station-station part using the
optimal number of levels we did not gain much over the mixed-mode network that used only one dedi-
cated fevel! The reason is familiar by now. Multi-fevel organizations are especially important when the
network is borh bursty and distributed, but this will not occur in our mixed-mode networks, since the
station-station part will become very distributed (.., 1/z will become very large) only when the traffic
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1s very steady.

Equation (20) can be generalized and will describe any mixed-mode network with an optimal-
level dedicated station-station part and a one-fevel random access terminal-station part if U. the max-
imum utilization of the random access scheme. is substituted fer 1/e. Fig. 19 shows the ratio between
the quality obtained with an optimal number of dedicated levels and the quality obtained with one dedi-
cated level. This ratio is identically equal to | when the tralfic is bursty because 1/:z is then very small,
and the optimal number of levels is then . W¢ see from Fig. 19 that if the random access mode is
better than ALOHA. introducing morc than onc dedicated level will lead to an even smaller improve-
ment. Only if there is a strong interaction, and the curve with U=.092 can be taken to represent
ALOHA with an interaction ratio equal to 4. will having more than one dedicated level lead to a more
significant improvement.

t1. Conclusions

ALOHA is good when the traffic is bursty, and dedicated channels are good when the traffic is
steady. Mixed-mode systems, with ALOHA in the bottom level and dedicated channels in the top
level, can be much better than either ALOHA or dedicated channels when the traffic is of medium
burstiness and the ‘amount’ of mixing is properly adjusted. Under rcasonably favorable conditions, the
available bandwidth should be shared by the two levels, and not split between them. But even when
conditions are the least favorable. and the channel must be split, the mixed-mode systems are surpris-
ingly good.

Mixed-mode systems in general, and mixed-mode networks in particular, show a certain robust-
ness. By the freedom to choose the right mix. the system gains an internal adjustment mechanism, and
will never push any cof its two parts until it is very bad. That is, the ALOHA part will ncver be heavily
loaded and there will never be many lightly utilized dedicated channels. Because of this robustness it is
harder to improve mix-mode networks. Changing the bottom level of a mixed-mode network from
ALOHA o a better random access scheme leads to only a relatively small overall improvement. Intro-
ducing more dedicated levels in a mixed-mode network likewise leads to only a4 modest overall
improvement.
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